cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A202357 Decimal expansion of the number x satisfying e*x = e^(-x).

Original entry on oeis.org

2, 7, 8, 4, 6, 4, 5, 4, 2, 7, 6, 1, 0, 7, 3, 7, 9, 5, 1, 0, 9, 3, 5, 8, 7, 3, 9, 0, 2, 2, 9, 8, 0, 1, 5, 5, 4, 3, 9, 4, 7, 7, 4, 8, 8, 6, 1, 9, 7, 4, 5, 7, 6, 5, 4, 5, 3, 1, 7, 8, 1, 0, 5, 5, 3, 5, 0, 2, 9, 3, 7, 5, 4, 5, 9, 9, 4, 9, 8, 9, 8, 1, 9, 2, 0, 4, 9, 8, 4, 2, 8, 1, 1, 2, 9, 9, 4, 2, 8
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2011

Keywords

Comments

See A202322 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			0.2784645427610737951093587390229801554394774886...
		

References

  • Heine Halberstam and Hans Egon-Richert, Sieve Methods, Dover Publications (2011). See Theorem 2.1.

Crossrefs

Programs

  • Mathematica
    u = E; v = 0;
    f[x_] := u*x + v; g[x_] := E^-x
    Plot[{f[x], g[x]}, {x, 0, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110]
    RealDigits[r]  (* A202357 *)
    RealDigits[ ProductLog[1/E], 10, 99] // First (* Jean-François Alcover, Feb 14 2013 *)
    RealDigits[LambertW[Exp[-1]],10,120][[1]] (* Harvey P. Dale, Dec 24 2019 *)
  • PARI
    lambertw(exp(-1)) \\ Michel Marcus, Mar 21 2016

Formula

The constant in A202355 minus 1. - R. J. Mathar, Dec 21 2011
1+x+log(x)=0. - R. J. Mathar, Nov 02 2012
Equals LambertW(exp(-1)). - Vaclav Kotesovec, Jan 10 2014

A215078 Triangle of sums of the first k n-th powers multiplied by binomial(n,k), read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 5, 0, 3, 27, 36, 0, 4, 102, 392, 354, 0, 5, 330, 2760, 6500, 4425, 0, 6, 975, 15880, 73350, 123090, 67171, 0, 7, 2709, 81060, 654500, 2033325, 2637327, 1200304, 0, 8, 7196, 381808, 5064780, 25926824, 59992660, 63259168, 24684612, 0, 9, 18468, 1696464, 35574840, 281668590, 1034305524, 1896003648, 1681960464, 574304985, 0, 10, 46125, 7208880, 232816500, 2740317300, 14981494710, 42457884000, 64240088580, 49143419250, 14914341925
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

If one starts the sum at j=0, the initial term T(0,0) is 1.

Examples

			  0
  0  1
  0  2    5
  0  3   27       36
  0  4  102      392      354
  0  5  330     2760     6500     4425
  0  6  975    15880    73350   123090    67171
  0  7 2709    81060   654500  2033325  2637327  1200304
		

Crossrefs

Binomial convolution of A215083.
Cf. A215077 (row sums), A031971 (diagonal)

Programs

  • Maple
    A215078 := proc(n,k)
            binomial(n,k)*add(j^n,j=1..k) ;
    end proc:
    seq(seq(A215078(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jan 27 2023
  • Mathematica
    Flatten[Table[Table[Sum[j^n, {j, 1, k}]*Binomial[n, k], {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = binomial(n,k)*sum(j^n, j=1..k)

A215079 Triangle T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k).

Original entry on oeis.org

1, 0, 1, 0, 3, 4, 0, 7, 32, 27, 0, 15, 176, 405, 256, 0, 31, 832, 3888, 6144, 3125, 0, 63, 3648, 30618, 90112, 109375, 46656, 0, 127, 15360, 216513, 1048576, 2265625, 2239488, 823543, 0, 255, 63232, 1436859, 10682368, 36328125, 62145792, 51883209, 16777216, 0, 511, 257024, 9172278, 100139008, 500000000, 1310100480, 1856265922, 1342177280, 387420489, 0, 1023, 1037312, 57159432, 889192448, 6230468750, 23339943936, 49715643824, 60129542144, 38354628411, 10000000000
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

Initial term T(0,0) may be computed as 0, depending on formula and convention.

Examples

			      1
      0       1
      0       3       4
      0       7      32      27
      0      15     176     405     256
      0      31     832    3888    6144    3125
      0      63    3648   30618   90112  109375   46656
      0     127   15360  216513 1048576 2265625 2239488  823543
		

Crossrefs

Row sums sequence is A215077.
Product of A055248 and A089072 (with an initial 0 in each row).
Cf. A000225 (column k=1), A000312 (diagonal).

Programs

  • Maple
    A215079 := proc(n,k)
        k^n*add( binomial(n,n-k-j),j=0..n-k) ;
    end proc: # R. J. Mathar, Feb 08 2021
  • Mathematica
    Flatten[Table[Table[Sum[k^n*Binomial[n, n - k - j], {j, 0, n - k}],  {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k) = k^n * A055248(n,k-1).
T(n,k) = k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1)
T(n,1) = A000225(n). - R. J. Mathar, Feb 08 2021
Showing 1-3 of 3 results.