A007820
Stirling numbers of second kind S(2n,n).
Original entry on oeis.org
1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0
kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)
G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- Alois P. Heinz, Table of n, a(n) for n = 0..345 (terms n = 1..200 from Vincenzo Librandi)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- O-Y. Chan and D. V. Manna, Divisibility properties of Stirling numbers of the second kind [From _Jason Kimberley_, Sep 14 2009]
-
A007820 := proc(n) Stirling2(2*n,n) ; end proc:
seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
-
Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
-
makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
-
a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
-
{a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
-
from sympy.functions.combinatorial.numbers import stirling
def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
-
[stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
A217913
O.g.f.: Sum_{n>=0} (n^3)^n * exp(-n^3*x) * x^n / n!.
Original entry on oeis.org
1, 1, 31, 3025, 611501, 210766920, 110687251039, 82310957214948, 82318282158320505, 106563273280541795575, 173373343599189364594756, 346289681454731077633095526, 833091176987705031151553054843, 2376102520162485084539597049185710
Offset: 0
O.g.f.: A(x) = 1 + x + 31*x^2 + 3025*x^3 + 611501*x^4 + ... + Stirling2(3*n, n)*x^n + ...
where
A(x) = 1 + 1^3*x*exp(-1^3*x) + 2^6*exp(-2^3*x)*x^2/2! + 3^9*exp(-3^3*x)*x^3/3! + 4^12*exp(-4^3*x)*x^4/4! + 5^15*exp(-5^3*x)*x^5/5! + ...
simplifies to a power series in x with integer coefficients.
-
Table[StirlingS2[3*n,n],{n,0,20}] (* Vaclav Kotesovec, Feb 28 2013 *)
-
makelist(stirling2(3*n, n), n, 0, 13); /* Martin Ettl, Oct 15 2012 */
-
{a(n)=polcoeff(sum(k=0,n,(k^3)^k*exp(-k^3*x +x*O(x^n))*x^k/k!),n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^3)^k*x^k/(1+k^3*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(3*n, n)}
for(n=0,20,print1(a(n),", "))
A217915
O.g.f.: Sum_{n>=1} (n^5)^n * exp(-n^5*x) * x^n / n!.
Original entry on oeis.org
1, 1, 511, 2375101, 45232115901, 2436684974110751, 299310102746948685757, 72786959006434393367186463, 31712979422428631132831124895809, 22982258052528294182955639980819773510, 26154716515862881292012777396577993781727011
Offset: 0
O.g.f.: A(x) = 1 + x + 511*x^2 + 2375101*x^3 + 45232115901*x^4 +...+ Stirling2(5*n, n)*x^n +...
where
A(x) = 1 + 1^5*x*exp(-1^5*x) + 2^10*exp(-2^5*x)*x^2/2! + 3^15*exp(-3^5*x)*x^3/3! + 4^20*exp(-4^5*x)*x^4/4! + 5^25*exp(-5^5*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[5*n,n],{n,0,20}] (* Vaclav Kotesovec, May 23 2013 *)
-
makelist(stirling2(5*n, n), n, 0, 10); /* Martin Ettl, Oct 15 2012 */
-
{a(n)=polcoeff(sum(k=0,n,(k^5)^k*exp(-k^5*x +x*O(x^n))*x^k/k!),n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^5)^k*x^k/(1+k^5*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(4*n))), 4*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(5*n, n)}
for(n=0,12,print1(a(n),", "))
A218141
a(n) = Stirling2(n^2, n).
Original entry on oeis.org
1, 1, 7, 3025, 171798901, 2436684974110751, 14204422416132896951197888, 50789872166903636182659702516635946082, 155440114706926165785630654089245708839702615196926765, 541500903058656141876322139677626107784896646583041951351456223689104719
Offset: 0
O.g.f.: A(x) = 1 + x + 7*x^2 + 3025*x^3 + 171798901*x^4 + 2436684974110751*x^5 +...
-
Table[StirlingS2[n^2, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
-
makelist(stirling2(n^2,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
-
{a(n)=polcoeff(sum(k=0,n,(k^n)^k*exp(-k^n*x +x*O(x^n))*x^k/k!),n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2+1))), n^2-n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(n^2, n)}
for(n=0, 10, print1(a(n), ", "))
A222526
O.g.f.: Sum_{n>=0} (n^6)^n * exp(-n^6*x) * x^n / n!.
Original entry on oeis.org
1, 1, 2047, 64439010, 11681056634501, 7713000216608565075, 14204422416132896951197888, 61232072982330045410678351728440, 545827051514425992551826008968173372261, 9173647538352903119028122246836507680995590680
Offset: 0
O.g.f.: A(x) = 1 + x + 2047*x^2 + 64439010*x^3 + 11681056634501*x^4 +...+ Stirling2(6*n, n)*x^n +...
where
A(x) = 1 + 1^6*x*exp(-1^6*x) + 2^12*exp(-2^6*x)*x^2/2! + 3^18*exp(-3^6*x)*x^3/3! + 4^24*exp(-4^6*x)*x^4/4! + 5^30*exp(-5^6*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[6*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^6)^k*exp(-k^6*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^6)^k*x^k/(1+k^6*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(5*n))), 5*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(6*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222527
O.g.f.: Sum_{n>=0} (n^7)^n * exp(-n^7*x) * x^n / n!.
Original entry on oeis.org
1, 1, 8191, 1742343625, 2998587019946701, 24204004899040755811870, 666480349285726891499539272955, 50789872166903636182659702516635946082, 9237419992097529135737293866043969707761346313, 3590622358224471993651445012122431990834934483552661750
Offset: 0
O.g.f.: A(x) = 1 + x + 8191*x^2 + 1742343625*x^3 + 2998587019946701*x^4 +...+ Stirling2(7*n, n)*x^n +...
where
A(x) = 1 + 1^7*x*exp(-1^7*x) + 2^14*exp(-2^7*x)*x^2/2! + 3^21*exp(-3^7*x)*x^3/3! + 4^28*exp(-4^7*x)*x^4/4! + 5^35*exp(-5^7*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[7*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^7)^k*exp(-k^7*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^7)^k*x^k/(1+k^7*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(6*n))), 6*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(7*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222528
O.g.f.: Sum_{n>=0} (n^8)^n * exp(-n^8*x) * x^n / n!.
Original entry on oeis.org
1, 1, 32767, 47063200806, 768305500780164501, 75740854251732106906082250, 31154086963475828638359480518580526, 41929298560838945526242744414099901692285884, 155440114706926165785630654089245708839702615196926765, 1396002062838446082394548660243302585983358463911636390911298400
Offset: 0
O.g.f.: A(x) = 1 + x + 32767*x^2 + 47063200806*x^3 + 768305500780164501*x^4 +...+ Stirling2(8*n, n)*x^n +...
where
A(x) = 1 + 1^8*x*exp(-1^8*x) + 2^16*exp(-2^8*x)*x^2/2! + 3^24*exp(-3^8*x)*x^3/3! + 4^32*exp(-4^8*x)*x^4/4! + 5^40*exp(-5^8*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[8*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^8)^k*exp(-k^8*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^8)^k*x^k/(1+k^8*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(7*n))), 7*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(8*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222529
O.g.f.: Sum_{n>=0} (n^9)^n * exp(-n^9*x) * x^n / n!.
Original entry on oeis.org
1, 1, 131071, 1270865805301, 196740254364198919901, 236795997997922560392792426501, 1454443713270449746545892977574122129433, 34559048315358253352594346952765431711799794270765, 2610516895723221966171633379256064857587637240616032299710417
Offset: 0
O.g.f.: A(x) = 1 + x + 131071*x^2 + 1270865805301*x^3 + 196740254364198919901*x^4 +...+ Stirling2(9*n, n)*x^n +...
where
A(x) = 1 + 1^9*x*exp(-1^9*x) + 2^18*exp(-2^9*x)*x^2/2! + 3^27*exp(-3^9*x)*x^3/3! + 4^36*exp(-4^9*x)*x^4/4! + 5^45*exp(-5^9*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[9*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^9)^k*exp(-k^9*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^9)^k*x^k/(1+k^9*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(8*n))), 8*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(9*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222530
O.g.f.: Sum_{n>=1} (n^10)^n * exp(-n^10*x) * x^n / n!.
Original entry on oeis.org
1, 1, 524287, 34314651811530, 50369882873307917364901, 740095864368253016271188139587625, 67872880319721869662486234870635119906757244, 28468832412072117193931250482560479429446507352468258480, 43812568949824405485262661429905291482204531455805230631187460302069
Offset: 0
O.g.f.: A(x) = 1 + x + 524287*x^2 + 34314651811530*x^3 + 50369882873307917364901*x^4 +...+ Stirling2(10*n, n)*x^n +...
where
A(x) = 1 + 1^10*x*exp(-1^10*x) + 2^20*exp(-2^10*x)*x^2/2! + 3^30*exp(-3^10*x)*x^3/3! + 4^40*exp(-4^10*x)*x^4/4! + 5^50*exp(-5^10*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[10*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^10)^k*exp(-k^10*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^1)^k*x^k/(1+k^10*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(9*n))), 9*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(10*n, n)}
for(n=0, 12, print1(a(n), ", "))
A218142
a(n) = Stirling2(n^2+n, n).
Original entry on oeis.org
1, 1, 31, 86526, 45232115901, 7713000216608565075, 666480349285726891499539272955, 41929298560838945526242744414099901692285884, 2610516895723221966171633379256064857587637240616032299710417
Offset: 0
O.g.f.: A(x) = 1 + x + 31*x^2 + 86526*x^3 + 45232115901*x^4 +...
-
Table[StirlingS2[n^2+n, n],{n,0,10}] (* Vaclav Kotesovec, May 11 2014 *)
-
makelist(stirling2(n^2+n,n),n,0,30 ); /* Martin Ettl, Oct 21 2012 */
-
{a(n)=polcoeff(sum(k=0,n,(k^(n+1))^k*exp(-k^(n+1)*x +x*O(x^n))*x^k/k!),n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(n^2))), n^2)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(n^2+n, n)}
for(n=0, 10, print1(a(n), ", "))
Showing 1-10 of 12 results.
Comments