A222526
O.g.f.: Sum_{n>=0} (n^6)^n * exp(-n^6*x) * x^n / n!.
Original entry on oeis.org
1, 1, 2047, 64439010, 11681056634501, 7713000216608565075, 14204422416132896951197888, 61232072982330045410678351728440, 545827051514425992551826008968173372261, 9173647538352903119028122246836507680995590680
Offset: 0
O.g.f.: A(x) = 1 + x + 2047*x^2 + 64439010*x^3 + 11681056634501*x^4 +...+ Stirling2(6*n, n)*x^n +...
where
A(x) = 1 + 1^6*x*exp(-1^6*x) + 2^12*exp(-2^6*x)*x^2/2! + 3^18*exp(-3^6*x)*x^3/3! + 4^24*exp(-4^6*x)*x^4/4! + 5^30*exp(-5^6*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[6*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^6)^k*exp(-k^6*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^6)^k*x^k/(1+k^6*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(5*n))), 5*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(6*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222527
O.g.f.: Sum_{n>=0} (n^7)^n * exp(-n^7*x) * x^n / n!.
Original entry on oeis.org
1, 1, 8191, 1742343625, 2998587019946701, 24204004899040755811870, 666480349285726891499539272955, 50789872166903636182659702516635946082, 9237419992097529135737293866043969707761346313, 3590622358224471993651445012122431990834934483552661750
Offset: 0
O.g.f.: A(x) = 1 + x + 8191*x^2 + 1742343625*x^3 + 2998587019946701*x^4 +...+ Stirling2(7*n, n)*x^n +...
where
A(x) = 1 + 1^7*x*exp(-1^7*x) + 2^14*exp(-2^7*x)*x^2/2! + 3^21*exp(-3^7*x)*x^3/3! + 4^28*exp(-4^7*x)*x^4/4! + 5^35*exp(-5^7*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[7*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^7)^k*exp(-k^7*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^7)^k*x^k/(1+k^7*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(6*n))), 6*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(7*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222528
O.g.f.: Sum_{n>=0} (n^8)^n * exp(-n^8*x) * x^n / n!.
Original entry on oeis.org
1, 1, 32767, 47063200806, 768305500780164501, 75740854251732106906082250, 31154086963475828638359480518580526, 41929298560838945526242744414099901692285884, 155440114706926165785630654089245708839702615196926765, 1396002062838446082394548660243302585983358463911636390911298400
Offset: 0
O.g.f.: A(x) = 1 + x + 32767*x^2 + 47063200806*x^3 + 768305500780164501*x^4 +...+ Stirling2(8*n, n)*x^n +...
where
A(x) = 1 + 1^8*x*exp(-1^8*x) + 2^16*exp(-2^8*x)*x^2/2! + 3^24*exp(-3^8*x)*x^3/3! + 4^32*exp(-4^8*x)*x^4/4! + 5^40*exp(-5^8*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[8*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^8)^k*exp(-k^8*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^8)^k*x^k/(1+k^8*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(7*n))), 7*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(8*n, n)}
for(n=0, 12, print1(a(n), ", "))
A222529
O.g.f.: Sum_{n>=0} (n^9)^n * exp(-n^9*x) * x^n / n!.
Original entry on oeis.org
1, 1, 131071, 1270865805301, 196740254364198919901, 236795997997922560392792426501, 1454443713270449746545892977574122129433, 34559048315358253352594346952765431711799794270765, 2610516895723221966171633379256064857587637240616032299710417
Offset: 0
O.g.f.: A(x) = 1 + x + 131071*x^2 + 1270865805301*x^3 + 196740254364198919901*x^4 +...+ Stirling2(9*n, n)*x^n +...
where
A(x) = 1 + 1^9*x*exp(-1^9*x) + 2^18*exp(-2^9*x)*x^2/2! + 3^27*exp(-3^9*x)*x^3/3! + 4^36*exp(-4^9*x)*x^4/4! + 5^45*exp(-5^9*x)*x^5/5! +...
is a power series in x with integer coefficients.
-
Table[StirlingS2[9*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
{a(n)=polcoeff(sum(k=0, n, (k^9)^k*exp(-k^9*x +x*O(x^n))*x^k/k!), n)}
-
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^9)^k*x^k/(1+k^9*x +x*O(x^n))^(k+1)), n)}
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(8*n))), 8*n)}
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = Stirling2(9*n, n)}
for(n=0, 12, print1(a(n), ", "))
Showing 1-4 of 4 results.