cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A217900 O.g.f.: Sum_{n>=0} n^n * (n+1)^(n-1) * exp(-n*(n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 4, 38, 576, 12052, 322848, 10564304, 408903680, 18288706544, 928575662400, 52780935007968, 3321208845997056, 229232635832433664, 17221699990084108288, 1399139700462119135232, 122235936429355565580288, 11428226675376971405577984, 1138551595285580854471388160
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (n+1)^(n-1) * exp(-(n+1)*x) * x^n/n!.
More generally, if we define a(n) for fixed integers m, t, and s>=0, by:
(0) Sum_{n>=0} m * n^(s*n) * (n*t+m)^(n-1) * exp(-n^s*(n*t+m)*x) * x^n/n! = Sum_{n>=0} a(n)*x^n
then the coefficients a(n) are integral and may be expressed by:
(1) a(n) = 1/n! * Sum_{k=0..n} m*(-1)^(n-k)*binomial(n,k) * k^(s*n) * (k*t+m)^(n-1).
(2) a(n) = 1/n! * [x^n] Sum_{k>=0} m*k^(s*k)*(k*t+m)^(k-1)*x^k / (1 + k^s*(k*t+m)*x)^(k+1).
(3) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1+m*x)^(n-1) / Product_{k=1..n} (1-k*t*x).
(4) a(n) = 1/t^((s-1)*n) * [x^(s*n)] 1 + m*x*(1-m*x)^(s*n) / Product_{k=1..n} (1-(k*t+m)*x).

Examples

			O.g.f.: A(x) = 1 + x + 4*x^2 + 38*x^3 + 576*x^4 + 12052*x^5 + 322848*x^6 +...
where
A(x) = 1 + 1^1*2^0*x*exp(-1*2*x) + 2^2*3^1*exp(-2*3*x)*x^2/2! + 3^3*4^2*exp(-3*4*x)*x^3/3! + 4^4*5^3*exp(-4*5*x)*x^4/4! + 5^5*6^4*exp(-5*6*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/n!*Sum[(-1)^(n-k)*Binomial[n, k]*k^n*(k+1)^(n-1), {k, 0, n}]; a[0]=1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 06 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^m*(m+1)^(m-1)*x^m*exp(-m*(m+1)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(k+1)^(k-1)*x^k/(1+k*(k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(k+1)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=if(n==0,1,sum(k=0,n-1, binomial(n-1,k) * Stirling2(2*n-k-1,n)))} \\ Paul D. Hanna, Nov 13 2012
    /* PARI Programs for the General Case (START) ...................... */
    
  • PARI
    {a(n,m=1,t=1,s=1)=polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*exp(-k^s*(t*k+m)*x+x*O(x^n))*x^k/k!), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/n!)*polcoeff(sum(k=0, n, m*k^(s*k)*(t*k+m)^(k-1)*x^k/(1+k^s*(t*k+m)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=1/n!*sum(k=0, n, m*(-1)^(n-k)*binomial(n, k)*k^(s*n)*(t*k+m)^(n-1))}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1+m*x)^(n-1)/prod(k=0, n, 1-t*k*x +x*O(x^(s*n))), s*n)}
    
  • PARI
    {a(n,m=1,t=1,s=1)=(1/t^((s-1)*n))*polcoeff(1+m*x*(1-m*x)^(s*n)/prod(k=0, n, 1-(t*k+m)*x +x*O(x^(s*n))), s*n)}
    /* (END) ........................................................... */

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(k+1)^(k-1)*x^k / (1 + k*(k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1-(k+1)*x).
a(n) = A078739(n,n) for n>=1.
a(n) = Sum_{k=0..n-1} binomial(n-1,k) * Stirling2(2*n-k-1,n) for n>0, where Stirling2(n,k) = A008277(n,k). - Paul D. Hanna, Nov 13 2012
a(n) ~ 2^(2*n-1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 09 2014

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A217901 O.g.f.: Sum_{n>=0} 2*n^n * (n+2)^(n-1) * exp(-n*(n+2)*x) * x^n / n!.

Original entry on oeis.org

1, 2, 10, 106, 1736, 38414, 1073178, 36281032, 1441336688, 65849949118, 3403003693310, 196336487214234, 12513043615743360, 873250527590532680, 66241197525447027832, 5427563864923583687376, 477771405475710621697632, 44970647131664087237328798, 4507506792104658670610331462
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 2*(n+2)^(n-1) * exp(-(n+2)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 106*x^3 + 1736*x^4 + 38414*x^5 + 1073178*x^6 +...
where
A(x) = 1 + 2*1^1*3^0*x*exp(-1*3*x) + 2*2^2*4^1*exp(-2*4*x)*x^2/2! + 2*3^3*5^2*exp(-3*5*x)*x^3/3! + 2*4^4*6^3*exp(-4*6*x)*x^4/4! + 2*5^5*7^4*exp(-5*7*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*2^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2*m^m*(m+2)^(m-1)*x^m*exp(-m*(m+2)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 2*k^k*(k+2)^(k-1)*x^k/(1+k*(k+2)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 2*(-1)^(n-k)*binomial(n,k)*k^n*(k+2)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+2*x*(1+2*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+2*x*(1-2*x)^n/prod(k=0, n, 1-(k+2)*x +x*O(x^n)), n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 2*(-1)^(n-k)*binomial(n,k) * k^n * (k+2)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 2*k^k*(k+2)^(k-1)*x^k / (1 + k*(k+2)*x)^(k+1).
a(n) = [x^n] 1 + 2*x*(1+2*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 2*x*(1-2*x)^(n-1) / Product_{k=1..n} (1-(k+2)*x).
a(n) ~ 2^(2*n+1/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217905 O.g.f.: Sum_{n>=0} -n^n*(n-1)^(n-1) * exp(-n*(n-1)*x) * x^n / n!.

Original entry on oeis.org

1, -1, -2, -14, -184, -3532, -89256, -2800016, -104967808, -4578528464, -227816059360, -12735645181536, -790296855912576, -53905019035510528, -4008716449677965312, -322807879692969879552, -27983800239966141382656, -2598368754552749176202496, -257284990746988090769530368
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} -(n-1)^(n-1) * exp(-(n-1)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 - x - 2*x^2 - 14*x^3 - 184*x^4 - 3532*x^5 - 89256*x^6 +...
where
A(x) = 1 - 1^1*0^0*x*exp(-1*0*x) - 2^2*1^1*exp(-2*1*x)*x^2/2! - 3^3*2^2*exp(-3*2*x)*x^3/3! - 4^4*3^3*exp(-4*3*x)*x^4/4! - 5^5*4^4*exp(-5*4*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Join[{1, -1}, Table[(1/n!)*Sum[(-1)^(n - k + 1)*Binomial[n, k]*k^n*(k - 1)^(n - 1), {k, 0, n}], {n, 2, 50}]] (* G. C. Greubel, Nov 16 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,-m^m*(m-1)^(m-1)*x^m*exp(-m*(m-1)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, -k^k*(k-1)^(k-1)*x^k/(1+k*(k-1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, -(-1)^(n-k)*binomial(n,k)*k^n*(k-1)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1-x*(1-x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1-x*(1+x)^n/prod(k=0, n, 1-(k-1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = -A191236(n-1) for n>=1. [corrected by Vaclav Kotesovec, Aug 22 2018]
a(n) = 1/n! * Sum_{k=0..n} -(-1)^(n-k)*binomial(n,k) * k^n * (k-1)^(n-1) for n>=0.
a(n) = 1/n! * [x^n] Sum_{k>=0} -k^k*(k-1)^(k-1)*x^k / (1 + k*(k-1)*x)^(k+1).
a(n) = [x^n] 1 - x*(1-x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 - x*(1+x)^(n-1) / Product_{k=1..n} (1-(k-1)*x).
a(n) ~ -2^(n-1) * exp(n*(r-1)-r) * n^(n - 3/2) / (sqrt(Pi*(r-1)*(2-r)) * r^(n-1)), where r = 2 + LambertW(-2*exp(-2)) = A256500 = 1.5936242600400400923230418... - Vaclav Kotesovec, Aug 22 2018

A217902 O.g.f.: Sum_{n>=0} 3*n^n*(n+3)^(n-1) * exp(-n*(n+3)*x) * x^n / n!.

Original entry on oeis.org

1, 3, 18, 210, 3696, 86436, 2521800, 88274640, 3608360064, 168822613872, 8901871248480, 522534101560224, 33804242536287744, 2390169742849449216, 183412961210465667072, 15183107016739655860224, 1348837954231568133427200, 128012762381954718934183680
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 3*(n+3)^(n-1) * exp(-(n+3)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 3*x + 18*x^2 + 210*x^3 + 3696*x^4 + 86436*x^5 + 2521800*x^6 +...
where
A(x) = 1 + 3*1^1*4^0*x*exp(-1*4*x) + 3*2^2*5^1*exp(-2*5*x)*x^2/2! + 3*3^3*6^2*exp(-3*6*x)*x^3/3! + 3*4^4*7^3*exp(-4*7*x)*x^4/4! + 3*5^5*8^4*exp(-5*8*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*3^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,3*m^m*(m+3)^(m-1)*x^m*exp(-m*(m+3)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 3*k^k*(k+3)^(k-1)*x^k/(1+k*(k+3)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 3*(-1)^(n-k)*binomial(n,k)*k^n*(k+3)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+3*x*(1+3*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+3*x*(1-3*x)^n/prod(k=0, n, 1-(k+3)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 3*(-1)^(n-k)*binomial(n,k) * k^n * (k+3)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 3*k^k*(k+3)^(k-1)*x^k / (1 + k*(k+3)*x)^(k+1).
a(n) = [x^n] 1 + 3*x*(1+3*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 3*x*(1-3*x)^(n-1) / Product_{k=1..n} (1-(k+3)*x).
a(n) ~ 3 * 2^(2*n) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+3/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217903 O.g.f.: Sum_{n>=0} 4*n^n*(n+4)^(n-1) * exp(-n*(n+4)*x) * x^n / n!.

Original entry on oeis.org

1, 4, 28, 356, 6696, 165148, 5030124, 182425664, 7681137152, 368519318396, 19855601635860, 1187545259985444, 78096484084586904, 5602487847925307152, 435490669526307321808, 36468662242145922271968, 3273635846285796437437824, 313622489632532976209812284
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 4*(n+4)^(n-1) * exp(-(n+4)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + 4*x + 28*x^2 + 356*x^3 + 6696*x^4 + 165148*x^5 + 5030124*x^6 +...
where
A(x) = 1 + 4*1^1*5^0*x*exp(-1*5*x) + 4*2^2*6^1*exp(-2*6*x)*x^2/2! + 4*3^3*7^2*exp(-3*7*x)*x^3/3! + 4*4^4*8^3*exp(-4*8*x)*x^4/4! + 4*5^5*9^4*exp(-5*9*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*4^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,4*m^m*(m+4)^(m-1)*x^m*exp(-m*(m+4)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 4*k^k*(k+4)^(k-1)*x^k/(1+k*(k+4)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 4*(-1)^(n-k)*binomial(n,k)*k^n*(k+4)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+4*x*(1+4*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+4*x*(1-4*x)^n/prod(k=0, n, 1-(k+4)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 4*(-1)^(n-k)*binomial(n,k) * k^n * (k+4)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 4*k^k*(k+4)^(k-1)*x^k / (1 + k*(k+4)*x)^(k+1).
a(n) = [x^n] 1 + 4*x*(1+4*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 4*x*(1-4*x)^(n-1) / Product_{k=1..n} (1-(k+4)*x).
a(n) ~ 2^(2*n+5/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217904 O.g.f.: Sum_{n>=0} 5*n^n*(n+5)^(n-1) * exp(-n*(n+5)*x) * x^n / n!.

Original entry on oeis.org

1, 5, 40, 550, 11000, 285380, 9064560, 340521520, 14773539200, 727281054640, 40072285049600, 2444188361990880, 163550098793059200, 11915396563502988800, 939110495156447488000, 79629365649015094272000, 7229173136192077603737600, 699726658343948617515436800
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} 5*(n+5)^(n-1) * exp(-(n+5)*x) * x^n/n!.
From Vaclav Kotesovec, May 22 2014: (Start)
Generally, for p>=1, a(n) = 1/n!*Sum_{k=0..n} p*(-1)^(n-k) * binomial(n,k) * k^n * (k+p)^(n-1) = Sum_{j=0..n-1} binomial(n-1,j) * p^(n-j) * StirlingS2(n+j,n).
a(n) ~ p * 2^(2*n-3/2+p/2) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+p/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599...
(End)

Examples

			O.g.f.: A(x) = 1 + 5*x + 40*x^2 + 550*x^3 + 11000*x^4 + 285380*x^5 + 9064560*x^6 +...
where
A(x) = 1 + 5*1^1*6^0*x*exp(-1*6*x) + 5*2^2*7^1*exp(-2*7*x)*x^2/2! + 5*3^3*8^2*exp(-3*8*x)*x^3/3! + 5*4^4*9^3*exp(-4*9*x)*x^4/4! + 5*5^5*10^4*exp(-5*10*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*5^(n-j)*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,5*m^m*(m+5)^(m-1)*x^m*exp(-m*(m+5)*x+x*O(x^n))/m!),n)}
    
  • PARI
    {a(n)=(1/n!)*polcoeff(sum(k=0, n, 5*k^k*(k+5)^(k-1)*x^k/(1+k*(k+5)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, 5*(-1)^(n-k)*binomial(n,k)*k^n*(k+5)^(n-1))}
    
  • PARI
    {a(n)=polcoeff(1+5*x*(1+5*x)^(n-1)/prod(k=0, n, 1-k*x +x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(1+5*x*(1-5*x)^n/prod(k=0, n, 1-(k+5)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} 5*(-1)^(n-k)*binomial(n,k) * k^n * (k+5)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} 5*k^k*(k+5)^(k-1)*x^k / (1 + k*(k+5)*x)^(k+1).
a(n) = [x^n] 1 + 5*x*(1+5*x)^(n-1) / Product_{k=1..n} (1-k*x).
a(n) = [x^n] 1 + 5*x*(1-5*x)^(n-1) / Product_{k=1..n} (1-(k+5)*x).
a(n) ~ 5 * 2^(2*n+1) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+5/2)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 22 2014

A217910 O.g.f.: Sum_{n>=0} n^n*(2*n+1)^(n-1) * exp(-n*(2*n+1)*x) * x^n / n!.

Original entry on oeis.org

1, 1, 7, 125, 3641, 148297, 7792275, 502572905, 38466067169, 3409770740129, 343687137315215, 38829855954523317, 4861184771611069929, 668044273723230765337, 99988042875734734075243, 16191529121372446646518737, 2820684538705808192370559425
Offset: 0

Views

Author

Paul D. Hanna, Oct 14 2012

Keywords

Comments

Compare the g.f. to the LambertW identity:
1 = Sum_{n>=0} (2*n+1)^(n-1) * exp(-(2*n+1)*x) * x^n/n!.

Examples

			O.g.f.: A(x) = 1 + x + 7*x^2 + 125*x^3 + 3641*x^4 + 148297*x^5 + 7792275*x^6 +...
where
A(x) = 1 + 1^1*3^0*x*exp(-1*3*x) + 2^2*5^1*exp(-2*5*x)*x^2/2! + 3^3*7^2*exp(-3*7*x)*x^3/3! + 4^4*9^3*exp(-4*9*x)*x^4/4! + 5^5*11^4*exp(-5*11*x)*x^5/5! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n-1,j]*2^j*StirlingS2[n+j,n],{j,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, May 22 2014 *)
  • PARI
    {a(n)=polcoeff(sum(k=0,n,k^k*(2*k+1)^(k-1)*x^k*exp(-k*(2*k+1)*x+x*O(x^n))/k!),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=1/n!*polcoeff(sum(k=0, n, k^k*(2*k+1)^(k-1)*x^k/(1+k*(2*k+1)*x +x*O(x^n))^(k+1)), n)}
    
  • PARI
    {a(n)=1/n!*sum(k=0,n, (-1)^(n-k)*binomial(n,k)*k^n*(2*k+1)^(n-1))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1+x*(1+x)^(n-1)/prod(k=0, n, 1-2*k*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1+x*(1-x)^n/prod(k=0, n, 1-(2*k+1)*x +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n * (2*k+1)^(n-1).
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(2*k+1)^(k-1)*x^k / (1 + k*(2*k+1)*x)^(k+1).
a(n) = [x^n] 1 + x*(1+x)^(n-1) / Product_{k=1..n} (1 - 2*k*x).
a(n) = [x^n] 1 + x*(1-x)^(n-1) / Product_{k=1..n} (1 - (2*k+1)*x).
a(n) ~ 2^(3*n-9/4) * n^(n-3/2) / (sqrt(Pi*(1-c)) * exp(n) * (2-c)^(n-1) * c^(n+1/4)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, May 22 2014

A245109 G.f.: Sum_{n>=0} exp(-(1 + n^2*x)) * (1 + n^2*x)^n / n!.

Original entry on oeis.org

1, 3, 31, 520, 11991, 350889, 12428746, 516450792, 24619176153, 1323971052261, 79280864647205, 5231080689880500, 377062508515478306, 29479066783583059530, 2484534527715953700780, 224559818606249783480400, 21666961097367611148157815, 2222844864226101120054773295
Offset: 0

Views

Author

Paul D. Hanna, Jul 12 2014

Keywords

Comments

Compare the g.f. to:
(1) Sum_{n>=0} exp(-(1+n*x)) * (1+n*x)^n / n! = 1/(1-x).
(2) Sum_{n>=1} exp(-n^2*x) * n^(2*n) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n (A007820).

Examples

			G.f.: A(x) = 1 + 3*x + 31*x^2 + 520*x^3 + 11991*x^4 + 350889*x^5 +...
where
A(x) = exp(-1) + exp(-(1+x))*(1+x) + exp(-(1+2^2*x))*(1+2^2*x)^2/2!
+ exp(-(1+3^2*x))*(1+3^2*x)^3/3! + exp(-(1+4^2*x))*(1+4^2*x)^4/4!
+ exp(-(1+5^2*x))*(1+5^2*x)^5/5! + exp(-(1+6^2*x))*(1+6^2*x)^6/6!
+ exp(-(1+7^2*x))*(1+7^2*x)^7/7! + exp(-(1+8^2*x))*(1+8^2*x)^8/8! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[E^(-(1+k^2*x))*(1+k^2*x)^k/k!,{k,0,Infinity}],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 12 2014 *)
  • PARI
    /* Must first set suitable precision */ \p300
    {a(n)=local(A=1+x); A=suminf(k=0, exp(-(1+k^2*x)+x*O(x^n))*(1+k^2*x)^k/k!); round(polcoeff(A, n))}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ c * d^n * (n-1)!, where d = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.17655460948348035823168..., and c = 10.427337127699040838035... . - Vaclav Kotesovec, Jul 12 2014
a(n) = A049020(2n,n). - Alois P. Heinz, Aug 23 2017

A247238 a(n) = Stirling2(2*n+1, n).

Original entry on oeis.org

1, 15, 301, 7770, 246730, 9321312, 408741333, 20415995028, 1144614626805, 71187132291275, 4864251308951100, 362262620784874680, 29206898819153109600, 2534474684137526739000, 235535731151727520125765, 23339590705557273894321960
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 28 2014

Keywords

Examples

			O.g.f.: A(x) = x + 15*x^2 + 301*x^3 + 7770*x^4 + 246730*x^5 + 9321312*x^6 + ... where A(x) = 1^3*x*exp(-1^2*x) + 2^5*exp(-2^2*x)*x^2/2! + 3^7*exp(-3^2*x)*x^3/3! + 4^9*exp(-4^2*x)*x^4/4! + 5^11*exp(-5^2*x)*x^5/5! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[2*n+1, n], {n, 1, 20}] (* Vaclav Kotesovec, Nov 29 2014 *)
  • PARI
    vector(50, n, stirling(2*n+1, n, 2)) \\ Colin Barker, Nov 28 2014

Formula

a(n) = A243227(n) / (n-1)!. - Vaclav Kotesovec, Nov 29 2014
a(n) ~ 2^(2*n+1/2) * n^(n+1/2) / (sqrt(Pi) * sqrt(1-c) * exp(n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - Vaclav Kotesovec, Nov 29 2014
O.g.f. Sum_{n>=1} n^(2*n+1) * x^n * exp(-n^2*x) / n! = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Oct 09 2023
Showing 1-10 of 11 results. Next