cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A049020 Triangle of numbers a(n,k), 0 <= k <= n: number of set partitions of {1,2,...,n} in which exactly k of the blocks have been distinguished.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 15, 37, 31, 10, 1, 52, 151, 160, 75, 15, 1, 203, 674, 856, 520, 155, 21, 1, 877, 3263, 4802, 3556, 1400, 287, 28, 1, 4140, 17007, 28337, 24626, 11991, 3290, 490, 36, 1, 21147, 94828, 175896, 174805, 101031, 34671, 6972, 786, 45, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle a(n,k) read by rows; given by [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Exponential Riordan array [exp(exp(x)-1), exp(x)-1]. - Paul Barry, Jan 12 2009
Equal to A048993*A007318. - Philippe Deléham, Oct 31 2011
This lower unitriangular array is the L factor in the LU decomposition of the Hankel matrix (Bell(i+j-2))A000110(n).%20The%20U%20factor%20is%20A059098%20(see%20Chamberland,%20p.%201672).%20-%20_Peter%20Bala">i,j >= 1, where Bell(n) = A000110(n). The U factor is A059098 (see Chamberland, p. 1672). - _Peter Bala, Oct 15 2023

Examples

			Triangle begins:
   1;
   1,  1;
   2,  3,  1;
   5, 10,  6,  1;
  15, 37, 31, 10,  1;
  ...
From _Paul Barry_, Jan 12 2009: (Start)
Production array begins
  1, 1;
  1, 2, 1;
  0, 2, 3, 1;
  0, 0, 3, 4, 1;
  0, 0, 0, 4, 5, 1;
  ... (End)
		

Crossrefs

First column gives A000110, second column = A005493.
Third column = A003128, row sums = A001861, A059340.
See A244489 for another version of this triangle.

Programs

  • Maple
    a:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
          `if`(n=0, 1, a(n-1, k-1) +(k+1)*(a(n-1, k) +a(n-1, k+1))))
        end:
    seq(seq(a(n, k), k=0..n), n=0..15);  # Alois P. Heinz, Nov 30 2012
  • Mathematica
    a[n_, k_] = Sum[StirlingS2[n, i]*Binomial[i, k], {i, 0, n}]; Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]]
    (* Jean-François Alcover, Aug 29 2011, after Vladeta Jovovic *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,n!*polcoeff(polcoeff(exp((1+y)*(exp(x+x*O(x^n))-1)),n),k))
    
  • Sage
    def A049020_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n, n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n, k] = M[n-1, k-1]+(k+1)*M[n-1, k]+(k+1)*M[n-1, k+1]
        return M
    A049020_triangle(9) # Peter Luschny, Sep 19 2012

Formula

a(n,k) = a(n-1, k-1) + (k+1)*a(n-1, k) + (k+1)*a(n-1, k+1), n >= 1.
a(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(i,k). - Vladeta Jovovic, Jan 27 2001
E.g.f. for the k-th column is (1/k!)*(exp(x)-1)^k*exp(exp(x)-1). - Vladeta Jovovic, Jan 27 2001
G.f.: 1/(1-x-xy-x^2(1+y)/(1-2x-xy-2x^2(1+y)/(1-3x-xy-3x^2(1+y)/(1-4x-xy-4x^2(1+y)/(1-... (continued fraction). - Paul Barry, Apr 29 2009
E.g.f.: exp((y+1)*(exp(x)-1)). - Geoffrey Critzer, Nov 30 2012
Note that A244489 (which is essentially the same triangle) has the formula T(n,k) = Sum_{j=k..n} binomial(n,j)*Stirling_2(j,k)*Bell(n-j), where Bell(n) = A000110(n), for n >= 1, 0 <= k <= n-1. - N. J. A. Sloane, May 17 2016
a(2n,n) = A245109(n). - Alois P. Heinz, Aug 23 2017
Empirical: a(n,k) = p(1^n)[st(1^k)] (see A002872 for notation). - Andrey Zabolotskiy, Oct 17 2017
a(n,k) = Sum_{j=0..k} (-1)^(k-j)*A046716(k, k-j)*Bell(n + j)/k!. - Peter Luschny, Dec 06 2023

Extensions

More terms from James Sellers.
Better definition from Geoffrey Critzer, Nov 30 2012.

A245110 G.f.: Sum_{n>=0} ( exp(-1/(1-n*x)) / (1-n*x)^n ) / n!.

Original entry on oeis.org

1, 1, 4, 23, 161, 1302, 11810, 117889, 1277890, 14894043, 185226966, 2442933979, 33998594943, 497207012018, 7613797641286, 121711037138949, 2025687745708717, 35020194893837462, 627586143525936866, 11636932722633705392, 222893347544826491780, 4403534468187986689781
Offset: 0

Views

Author

Paul D. Hanna, Jul 12 2014

Keywords

Comments

Compare the g.f. to: Sum_{n>=0} exp(-(1+n*x)) * (1+n*x)^n / n! = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 161*x^4 + 1302*x^5 + 11810*x^6 +...
where
A(x) = exp(-1) + exp(-1/(1-x))/(1-x) + (exp(-1/(1-2*x))/(1-2*x)^2)/2!
+ (exp(-1/(1-3*x))/(1-3*x)^3)/3! + (exp(-1/(1-4*x))/(1-4*x)^4)/4!
+ (exp(-1/(1-5*x))/(1-5*x)^5)/5! + (exp(-1/(1-6*x))/(1-6*x)^6)/6!
+ (exp(-1/(1-7*x))/(1-7*x)^7)/7! + (exp(-1/(1-8*x))/(1-8*x)^8)/8! +...
simplifies to a power series in x with integer coefficients.
		

Crossrefs

Programs

  • PARI
    /* From definition (requires setting suitable precision) */ \p100
    {a(n)=local(A=1+x, X=x+x*O(x^n)); A=suminf(k=0, exp(-1/(1-k*X))/(1-k*X)^k/k!); round(polcoeff(A, n))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* From a(n) = Sum_{k=1..n} Stirling2(n, k) * C(n+k-1, k-1) */
    {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!}
    {a(n)=if(n==0,1,sum(k=1,n,Stirling2(n, k) * binomial(n+k-1, k-1)))}
    for(n=0, 30, print1(a(n),", "))
    
  • PARI
    /* As row sums of triangle A245111: */
    {A245111(n,k)=local(A=1+x*y); A=sum(k=0, n, 1/(1-k*x+x*O(x^n))^k*y^k/k!*exp(-y/(1-k*x+x*O(x^n))+y*O(y^n))); polcoeff(polcoeff(A, n,x),k,y)}
    {a(n) = sum(k=0,n, A245111(n,k))}
    /* Print Initial Rows of Triangle A245111: */
    {for(n=0, 10, for(k=0,n, print1(A245111(n,k),", "));print(""))}
    /* Row Sums yield A245110: */
    for(n=0, 30, print1(a(n),", "))

Formula

a(n) = Sum_{k=1..n} Stirling2(n, k) * C(n+k-1, k-1) for n>0 with a(0)=1.
Row sums of Triangle A245111.

A258467 Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order.

Original entry on oeis.org

1, 2, 12, 130, 2216, 52078, 1558219, 56524414, 2406802476, 117575627562, 6478447651345, 397345158550386, 26842747368209994, 1980156804133210116, 158365138356099680582, 13647670818304698139989, 1260732993182758276252088, 124273946254095006307105363
Offset: 0

Views

Author

Alois P. Heinz, May 30 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
    a:= n-> T(2*n, n):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; T[n_, k_] := Sum[b[n, n, k-i]*(-1)^i/(i!*(k-i)!), {i, 0, k}]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)

Formula

a(n) = A256130(2n,n).
a(n) ~ 2^(2*n-1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * c^n * (2-c)^n), where c = -A226775 = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 31 2015
a(n) ~ Stirling2(2*n, n) = A007820(n). - Vaclav Kotesovec, Jun 01 2015
Showing 1-4 of 4 results.