A007820
Stirling numbers of second kind S(2n,n).
Original entry on oeis.org
1, 1, 7, 90, 1701, 42525, 1323652, 49329280, 2141764053, 106175395755, 5917584964655, 366282500870286, 24930204590758260, 1850568574253550060, 148782988064375309400, 12879868072770626040000, 1194461517469807833782085, 118144018577011378596484455
Offset: 0
kemp(AT)sads.informatik.uni-frankfurt.de (Rainer Kemp)
G.f.: A(x) = 1 + x + 7*x^2 + 90*x^3 + 1701*x^4 + 42525*x^5 +...,
where A(x) = 1 + 1^2*x*exp(-1*x) + 2^4*exp(-2^2*x)*x^2/2! + 3^6*exp(-3^2*x)*x^3/3! + 4^8*exp(-4^2*x)*x^4/4! + 5^10*exp(-5^2*x)*x^5/5! + ... - _Paul D. Hanna_, Oct 17 2012
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- Alois P. Heinz, Table of n, a(n) for n = 0..345 (terms n = 1..200 from Vincenzo Librandi)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- O-Y. Chan and D. V. Manna, Divisibility properties of Stirling numbers of the second kind [From _Jason Kimberley_, Sep 14 2009]
-
A007820 := proc(n) Stirling2(2*n,n) ; end proc:
seq(A007820(n),n=0..20) ; # R. J. Mathar, Mar 15 2011
-
Table[StirlingS2[2n, n], {n, 1, 12}] (* Emanuele Munarini, Mar 12 2011 *)
-
makelist(stirling2(2*n,n),n,0,12); /* Emanuele Munarini, Mar 12 2011 */
-
a(n)=stirling(2*n,n,2); /* Joerg Arndt, Jul 01 2011 */
-
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), n)} \\ Paul D. Hanna, Oct 17 2012
-
{a(n)=polcoeff(sum(m=1,n,(m^2)^m*exp(-m^2*x+x*O(x^n))*x^m/m!),n)} \\ Paul D. Hanna, Oct 17 2012
-
from sympy.functions.combinatorial.numbers import stirling
def A007820(n): return stirling(n<<1,n) # Chai Wah Wu, Jun 09 2025
-
[stirling_number2(2*i,i) for i in range(1,20)] # Zerinvary Lajos, Jun 26 2008
A350376
a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^2.
Original entry on oeis.org
1, 2, 23, 480, 14627, 587580, 29331038, 1750923328, 121673580435, 9648709656300, 859874920598850, 85078769750118144, 9254316901029412110, 1097635452798476278232, 140986468651523106196060, 19496446561112852736019200, 2887977880849714395963280515
Offset: 0
-
a[n_] := Coefficient[Series[Product[1/(1 - k*x)^2, {k, 1, n}], {x, 0, n}], x, n]; Array[a, 17, 0] (* Amiram Eldar, Dec 28 2021 *)
Table[Sum[StirlingS2[n + k, n]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Dec 29 2021 *)
-
a(n) = sum(k=0, n, stirling(n+k, n, 2)*stirling(2*n-k, n, 2));
A384012
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^3.
Original entry on oeis.org
1, 3, 33, 630, 17247, 616770, 27264976, 1436603616, 87922855935, 6131105251425, 479931312805425, 41674568874964740, 3975727750503656820, 413360925414308633034, 46523118781014280909560, 5635356193271621706436800, 730994763063708819170060751, 101099888222006502307905386445
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 17}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, 2*n-i, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, 2*n-i-j+1, 1))));
A384060
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.
Original entry on oeis.org
1, 4, 82, 3024, 162154, 11438280, 1001454024, 104777127616, 12755141675754, 1771354690734420, 276386332002204450, 47870892086756660064, 9113932961179205496744, 1891845220489637114281216, 425240943851497448491619600, 102899751348092720847554016000
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 15}]
A351508
a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^n.
Original entry on oeis.org
1, 1, 23, 1386, 162154, 31354800, 9078595483, 3682549444112, 1994756395887972, 1391788744738729470, 1216130179327397765925, 1301126343608005909401330, 1673298722590019165433540916, 2547164111922284803722749855516
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
-
a(n) = polcoef(1/prod(k=1, n, 1-k*x+x*O(x^n))^n, n);
A384022
a(n) = [x^(2*n)] Product_{k=0..n} 1/(1 - k*x)^3.
Original entry on oeis.org
1, 6, 699, 242434, 170580831, 202617635850, 364680579642546, 926271490234962816, 3156974021179142865351, 13905988122027295313489800, 76896867190774672671251191752, 521595538342870729288480053506382, 4258687803431080424982372253063299050, 41202042785933045982333959380025893914894
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, 2*n}], {n, 0, 15}] (* Vaclav Kotesovec, May 18 2025 *)
(* or *)
Table[Sum[StirlingS2[i+n, n] * StirlingS2[j+n, n] * StirlingS2[3*n-i-j, n], {i, 0, 2*n}, {j, 0, 2*n-i}], {n, 0, 15}] (* Vaclav Kotesovec, May 22 2025 *)
-
a(n) = sum(i=0, 2*n, sum(j=0, 2*n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(3*n-i-j, n, 2)));
A384087
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^3.
Original entry on oeis.org
1, 6, 162, 7848, 552000, 51035310, 5853933666, 802178739936, 127879052859648, 23252775004089990, 4750089647035004250, 1077069265550569663416, 268437124701985949614944, 72940650531961450912140558, 21461129870889481564510048050, 6797577340761206051865208521600, 2306127185536355501260494657447936
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^3/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}]
A384207
a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^3.
Original entry on oeis.org
1, 10, 6562, 21157758, 192817813260, 3803916720008250, 138757892706447212551, 8432782489668636227456524, 792912489591430219972681508172, 109146372957847294924041235504625400, 21071987342698034891951000233099719150440, 5513873439400596105839885628799257242723984298
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 0, n}], {x, 0, 3*n}], {n, 0, 15}]
Table[Sum[StirlingS2[i+n, n] * StirlingS2[j+n, n] * StirlingS2[4*n-i-j, n], {i, 0, 3*n}, {j, 0, 3*n-i}], {n, 0, 15}]
Showing 1-8 of 8 results.
Comments