cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383862 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.

Original entry on oeis.org

1, 3, 48, 1386, 58278, 3225915, 221726711, 18216234288, 1741626159966, 189977753488050, 23285057201978520, 3168272346322892094, 473878954663846060735, 77281168674525142984020, 13647787698908399220563400, 2594721838238358445753776000, 528401900314147344955336365822
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
    (* or *)
    Table[Sum[StirlingS2[i + n, n] * StirlingS2[j + n, n] * StirlingS2[2*n - i - j, n], {i, 0, n}, {j, 0, n-i}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(2*n-i-j, n, 2)));

Formula

a(n) = Sum_{i, j, k>=0 and i+j+k=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n).
a(n) ~ 2^(8*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * exp(n) * 3^(3*n + 3/2) * (4 - 3*w)^n * w^(3*n + 1)), where w = -LambertW(-4*exp(-4/3)/3) = 0.727473355414332993149219573314579663... - Vaclav Kotesovec, May 18 2025

A384207 a(n) = [x^(3*n)] Product_{k=0..n} 1/(1 - k*x)^3.

Original entry on oeis.org

1, 10, 6562, 21157758, 192817813260, 3803916720008250, 138757892706447212551, 8432782489668636227456524, 792912489591430219972681508172, 109146372957847294924041235504625400, 21071987342698034891951000233099719150440, 5513873439400596105839885628799257242723984298
Offset: 0

Views

Author

Vaclav Kotesovec, May 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 0, n}], {x, 0, 3*n}], {n, 0, 15}]
    Table[Sum[StirlingS2[i+n, n] * StirlingS2[j+n, n] * StirlingS2[4*n-i-j, n], {i, 0, 3*n}, {j, 0, 3*n-i}], {n, 0, 15}]

Formula

a(n) = Sum_{i=0..3*n, j=0..3*n-i} Stirling2(i+n, n) * Stirling2(j+n, n) * Stirling2(4*n-i-j, n).
a(n) ~ 2^(6*n + 1/2) * n^(3*n - 1/2) / (sqrt(3*Pi*(1-w)) * w^(3*n+1) * exp(3*n) * (2-w)^(3*n)), where w = -LambertW(-2*exp(-2)) = -A226775 = 0.406375739959959907676958124124839758210...
Showing 1-2 of 2 results.