A129256
Central coefficient of Product_{k=0..n} (1+k*x)^2.
Original entry on oeis.org
1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0
This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by:
(1);
1, (2), 1;
1, 6, (13), 12, 4;
1, 12, 58, (144), 193, 132, 36;
1, 20, 170, 800, (2273), 3980, 4180, 2400, 576;
1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400;
...
-
Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
-
{a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009
A384031
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^4.
Original entry on oeis.org
1, 4, 62, 1680, 65446, 3334800, 210218956, 15803243456, 1380404187558, 137419388080920, 15359405910256580, 1904647527097204032, 259511601503239509004, 38539384808775589973416, 6195988524478342471690200, 1072149116496356641327200000, 198683315255720972000976370950
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, 3*n-i, sum(k=0, 3*n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, 3*n-i-j-k+1, 1)))));
A383862
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.
Original entry on oeis.org
1, 3, 48, 1386, 58278, 3225915, 221726711, 18216234288, 1741626159966, 189977753488050, 23285057201978520, 3168272346322892094, 473878954663846060735, 77281168674525142984020, 13647787698908399220563400, 2594721838238358445753776000, 528401900314147344955336365822
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
(* or *)
Table[Sum[StirlingS2[i + n, n] * StirlingS2[j + n, n] * StirlingS2[2*n - i - j, n], {i, 0, n}, {j, 0, n-i}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, n-i, stirling(i+n, n, 2)*stirling(j+n, n, 2)*stirling(2*n-i-j, n, 2)));
A351507
a(n) = [x^n] Product_{k=1..n} (1 + k*x)^n.
Original entry on oeis.org
1, 1, 13, 630, 65446, 11732175, 3222746276, 1257489289280, 661150527657180, 450529025613124095, 386183537239831846450, 406654820487854059966416, 516014868401631381045209376, 776565429016998902169538130936, 1367544537916924083498367095477800
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
-
a(n) = polcoef(prod(k=1, n, 1+k*x)^n, n);
A384017
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^5.
Original entry on oeis.org
1, 5, 100, 3510, 177370, 11732175, 960453825, 93791830160, 10644367637490, 1376936603007075, 200002385378370350, 32233130183113838550, 5708169533474858008905, 1101836121788665346133960, 230256048227047074266497400, 51791322674249971562728368000
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^5, {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 19 2025 *)
-
a(n) = polcoef(prod(k=1, n, 1+k*x)^5, n);
A384087
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^3.
Original entry on oeis.org
1, 6, 162, 7848, 552000, 51035310, 5853933666, 802178739936, 127879052859648, 23252775004089990, 4750089647035004250, 1077069265550569663416, 268437124701985949614944, 72940650531961450912140558, 21461129870889481564510048050, 6797577340761206051865208521600, 2306127185536355501260494657447936
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^3/(1-k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 16}]
Showing 1-6 of 6 results.
Comments