A384031
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^4.
Original entry on oeis.org
1, 4, 62, 1680, 65446, 3334800, 210218956, 15803243456, 1380404187558, 137419388080920, 15359405910256580, 1904647527097204032, 259511601503239509004, 38539384808775589973416, 6195988524478342471690200, 1072149116496356641327200000, 198683315255720972000976370950
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, 3*n-i, sum(k=0, 3*n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, 3*n-i-j-k+1, 1)))));
A351764
a(n) = [x^n] Product_{k=1..n} (1 + k*x)^n / (1 - k*x)^n.
Original entry on oeis.org
1, 2, 72, 7848, 1728000, 641258850, 360403076376, 285818177146208, 304172586944446464, 418400927094822149970, 722587619114932445325000, 1530927286486636135080191736, 3904621941927926455303092180480, 11801667653769333351640692783069714
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + k*x)^n / (1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}]
-
a(n) = my(x='x+O(x^(n+1))); polcoef(prod(k=1, n, (1+k*x)^n/ (1-k*x)^n), n); \\ Michel Marcus, Feb 19 2022
A384012
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^3.
Original entry on oeis.org
1, 3, 33, 630, 17247, 616770, 27264976, 1436603616, 87922855935, 6131105251425, 479931312805425, 41674568874964740, 3975727750503656820, 413360925414308633034, 46523118781014280909560, 5635356193271621706436800, 730994763063708819170060751, 101099888222006502307905386445
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 17}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, 2*n-i, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, 2*n-i-j+1, 1))));
A351508
a(n) = [x^n] Product_{k=1..n} 1/(1 - k*x)^n.
Original entry on oeis.org
1, 1, 23, 1386, 162154, 31354800, 9078595483, 3682549444112, 1994756395887972, 1391788744738729470, 1216130179327397765925, 1301126343608005909401330, 1673298722590019165433540916, 2547164111922284803722749855516
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
-
a(n) = polcoef(1/prod(k=1, n, 1-k*x+x*O(x^n))^n, n);
A384017
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^5.
Original entry on oeis.org
1, 5, 100, 3510, 177370, 11732175, 960453825, 93791830160, 10644367637490, 1376936603007075, 200002385378370350, 32233130183113838550, 5708169533474858008905, 1101836121788665346133960, 230256048227047074266497400, 51791322674249971562728368000
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^5, {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 19 2025 *)
-
a(n) = polcoef(prod(k=1, n, 1+k*x)^5, n);
A384091
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x)^n.
Original entry on oeis.org
1, 1, 33, 6968, 4503078, 6507545775, 17683339661956, 80849884332530600, 575530003415681613468, 6023356562522188931288775, 88682105895482127774508529242, 1773600518272635675832361778156960, 46830898160739235037404595987069052560, 1594447058825655577475889095097916983404652
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k^2*x)^n, {k, 0, n}], {x, 0, n}], {n, 0, 15}]
A384089
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^n.
Original entry on oeis.org
1, 0, 1, 63, 7206, 1357300, 384271700, 153027592116, 81648987014364, 56259916067074896, 48646018448463951450, 51584263505394472459750, 65833976467770842558152992, 99553004175105699906002335098, 176031670802373999913671973955080, 359870756416991348769957239299854000
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + k*x)^n, {k, 0, n-1}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 19 2025 *)
-
a(n) = polcoef(prod(k=0, n-1, 1+k*x)^n, n);
Showing 1-7 of 7 results.
Comments