A129256
Central coefficient of Product_{k=0..n} (1+k*x)^2.
Original entry on oeis.org
1, 2, 13, 144, 2273, 46710, 1184153, 35733376, 1251320145, 49893169050, 2232012515445, 110722046632560, 6032418472347265, 358103844593876654, 23007314730623658225, 1590611390957425536000, 117745011140615270168865
Offset: 0
This sequence equals the central terms of the triangle in which the g.f. of row n is (1+x)^2*(1+2x)^2*(1+3x)^2*...*(1+n*x)^2, as illustrated by:
(1);
1, (2), 1;
1, 6, (13), 12, 4;
1, 12, 58, (144), 193, 132, 36;
1, 20, 170, 800, (2273), 3980, 4180, 2400, 576;
1, 30, 395, 3000, 14523, (46710), 100805, 143700, 129076, 65760, 14400;
...
-
Flatten[{1,Table[Coefficient[Expand[Product[(1+k*x),{k,0,n}]^2],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
a(n)=polcoeff(prod(k=0,n,1+k*x)^2,n)
-
{a(n)=(-1)^n*sum(k=0,n,stirling(n+1,k+1,1)*stirling(n+1,n-k+1,1))} \\ Paul D. Hanna, Jul 16 2009
A351507
a(n) = [x^n] Product_{k=1..n} (1 + k*x)^n.
Original entry on oeis.org
1, 1, 13, 630, 65446, 11732175, 3222746276, 1257489289280, 661150527657180, 450529025613124095, 386183537239831846450, 406654820487854059966416, 516014868401631381045209376, 776565429016998902169538130936, 1367544537916924083498367095477800
Offset: 0
-
Table[SeriesCoefficient[Product[(1 + k*x)^n, {k,1,n}], {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Feb 18 2022 *)
-
a(n) = polcoef(prod(k=1, n, 1+k*x)^n, n);
A384012
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^3.
Original entry on oeis.org
1, 3, 33, 630, 17247, 616770, 27264976, 1436603616, 87922855935, 6131105251425, 479931312805425, 41674568874964740, 3975727750503656820, 413360925414308633034, 46523118781014280909560, 5635356193271621706436800, 730994763063708819170060751, 101099888222006502307905386445
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^3, {k, 1, n}], {x, 0, n}], {n, 0, 17}] (* Vaclav Kotesovec, May 18 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, 2*n-i, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, 2*n-i-j+1, 1))));
A384060
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.
Original entry on oeis.org
1, 4, 82, 3024, 162154, 11438280, 1001454024, 104777127616, 12755141675754, 1771354690734420, 276386332002204450, 47870892086756660064, 9113932961179205496744, 1891845220489637114281216, 425240943851497448491619600, 102899751348092720847554016000
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 15}]
A384029
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^4.
Original entry on oeis.org
1, 0, 6, 180, 7206, 370880, 23477380, 1768061064, 154544373158, 15387101825184, 1719596420272980, 213181689525888600, 29036623040055512332, 4310582688852993653568, 692756995680614782818992, 119830419866883597939018000, 22198322332579642585088580870, 4384714751330840129324051474880
Offset: 0
-
a(n) = sum(i=0, n, sum(j=0, 3*n-i, sum(k=0, 3*n-i-j, abs(stirling(n, i, 1)*stirling(n, j, 1)*stirling(n, k, 1)*stirling(n, 3*n-i-j-k, 1)))));
A384017
a(n) = [x^n] Product_{k=0..n} (1 + k*x)^5.
Original entry on oeis.org
1, 5, 100, 3510, 177370, 11732175, 960453825, 93791830160, 10644367637490, 1376936603007075, 200002385378370350, 32233130183113838550, 5708169533474858008905, 1101836121788665346133960, 230256048227047074266497400, 51791322674249971562728368000
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^5, {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 19 2025 *)
-
a(n) = polcoef(prod(k=1, n, 1+k*x)^5, n);
A382925
a(n) = [x^(3*n)] Product_{k=0..n} (1 + k*x)^4.
Original entry on oeis.org
1, 4, 248, 61320, 39194896, 51699564000, 122482878310656, 474300956527856640, 2804126507444905046272, 24036712401508315774848000, 286889291626307627568309995520, 4615084616716397442547883972818944, 97421519516367186622078306709619806208
Offset: 0
-
Abs[Table[Sum[StirlingS1[n+1, i+1] * StirlingS1[n+1, j+1] * StirlingS1[n+1, k+1] * StirlingS1[n+1, n-i-j-k+1], {i, 0, n}, {j, 0, n-i}, {k, 0, n-i-j}], {n, 0, 15}]] (* Vaclav Kotesovec, May 22 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, n-i-j-k+1, 1)))));
A384032
a(n) = [x^(2*n)] Product_{k=0..n} (1 + k*x)^4.
Original entry on oeis.org
1, 6, 321, 46364, 13052881, 6077950570, 4237586784577, 4137911590389080, 5394217192300621089, 9055251708372687577550, 19032397641903957029149569, 48970167155426122072661229684, 151429299992138418402024853511537, 554184682895238619253412365302575346
Offset: 0
-
Table[Sum[StirlingS1[n+1, i+1] * StirlingS1[n+1, j+1] * StirlingS1[n+1, k+1] * StirlingS1[n+1, 2*n-i-j-k+1], {i, 0, n}, {j, 0, 2*n-i}, {k, 0, 2*n-i-j}], {n, 0, 15}] (* Vaclav Kotesovec, May 22 2025 *)
-
a(n) = sum(i=0, n, sum(j=0, 2*n-i, sum(k=0, 2*n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, 2*n-i-j-k+1, 1)))));
A384088
a(n) = [x^n] Product_{k=1..n} ((1 + k*x)/(1 - k*x))^4.
Original entry on oeis.org
1, 8, 288, 18528, 1728000, 211687080, 32159822688, 5835397918336, 1231573968949248, 296447550279133320, 80158746419240852000, 24057027574081163030688, 7935414295799696292767232, 2853706409310576479751168168, 1111199574070700473937862463200, 465782420445680979210397280524800
Offset: 0
-
Table[SeriesCoefficient[Product[(1+k*x)^4/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}]
Showing 1-9 of 9 results.
Comments