cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384031 a(n) = [x^n] Product_{k=0..n} (1 + k*x)^4.

Original entry on oeis.org

1, 4, 62, 1680, 65446, 3334800, 210218956, 15803243456, 1380404187558, 137419388080920, 15359405910256580, 1904647527097204032, 259511601503239509004, 38539384808775589973416, 6195988524478342471690200, 1072149116496356641327200000, 198683315255720972000976370950
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 16}] (* Vaclav Kotesovec, May 18 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, 3*n-i, sum(k=0, 3*n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, 3*n-i-j-k+1, 1)))));

Formula

a(n) = Sum_{0<=i, j, k, l<=n and i+j+k+l=3*n} |Stirling1(n+1,i+1) * Stirling1(n+1,j+1) * Stirling1(n+1,k+1) * Stirling1(n+1,l+1)|.
a(n) ~ 2^(8*n + 7/2) * w^(4*n + 5/2) * n^(n - 1/2) / (sqrt(Pi*(w-1)) * 3^(3*n + 5/2) * exp(n) * (4*w-3)^n), where w = -LambertW(-1,-3*exp(-3/4)/4) = 1.300200741659068588153265179374583756429... - Vaclav Kotesovec, May 18 2025

A382925 a(n) = [x^(3*n)] Product_{k=0..n} (1 + k*x)^4.

Original entry on oeis.org

1, 4, 248, 61320, 39194896, 51699564000, 122482878310656, 474300956527856640, 2804126507444905046272, 24036712401508315774848000, 286889291626307627568309995520, 4615084616716397442547883972818944, 97421519516367186622078306709619806208
Offset: 0

Views

Author

Seiichi Manyama, May 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Abs[Table[Sum[StirlingS1[n+1, i+1] * StirlingS1[n+1, j+1] * StirlingS1[n+1, k+1] * StirlingS1[n+1, n-i-j-k+1], {i, 0, n}, {j, 0, n-i}, {k, 0, n-i-j}], {n, 0, 15}]] (* Vaclav Kotesovec, May 22 2025 *)
  • PARI
    a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, abs(stirling(n+1, i+1, 1)*stirling(n+1, j+1, 1)*stirling(n+1, k+1, 1)*stirling(n+1, n-i-j-k+1, 1)))));

Formula

a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n} |Stirling1(n+1,i+1) * Stirling1(n+1,j+1) * Stirling1(n+1,k+1) * Stirling1(n+1,l+1)|.
a(n) ~ 2^(8*n + 7/2) * w^(4*n + 5/2) * n^(3*n - 1/2) / (sqrt(Pi*(w-1)) * exp(3*n) * (4*w-1)^(3*n)), where w = -LambertW(-1, -exp(-1/4)/4) = 2.5866629822630538811828... - Vaclav Kotesovec, May 22 2025
Showing 1-2 of 2 results.