cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A287532 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals upwards, where A(n,k) = sum of unimodal products of length n and bound k.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 9, 1, 1, 26, 50, 16, 1, 1, 57, 222, 150, 25, 1, 1, 120, 867, 1080, 355, 36, 1, 1, 247, 3123, 6627, 3775, 721, 49, 1, 1, 502, 10660, 36552, 33502, 10626, 1316, 64, 1, 1, 1013, 35064, 187000, 262570, 128758, 25676, 2220, 81, 1
Offset: 0

Views

Author

Don Knuth, May 26 2017

Keywords

Comments

A unimodal product of length n and parameter k is a product of positive integers a_1 ... a_m ... a_n where a_1 <= ... <= a_m <= k and k >= a_m >= ... >= a_n; furthermore we consider each choice of m to give a distinct product, unless a_m=k. (See the example.)

Examples

			A(2,3)=50 because of the products 1*1,1*1,1*1 [m=0,1,2]; 1*2,1*2 [m=1,2]; 1*3; 2*1,2*1 [m=0,1]; 2*2,2*2,2*2 [m=0,1,2]; 2*3; 3*1; 3*2; 3*3; total 50.
Square array begins:
  n\k| 1,   2,    3,     4,      5,       6, ...
  ---+------------------------------------------
   0 | 1,   1,    1,     1,      1,       1, ...
   1 | 1,   4,    9,    16,     25,      36, ...
   2 | 1,  11,   50,   150,    355,     721, ...
   3 | 1,  26,  222,  1080,   3775,   10626, ...
   4 | 1,  57,  867,  6627,  33502,  128758, ...
   5 | 1, 120, 3123, 36552, 262570, 1360128, ...
  ...
		

Crossrefs

A(n,n) gives A383883.
Columns k=5..6 give A383892, A383893.

Programs

  • Mathematica
    f[k_]:=Product[1-j x,{j,k}]; A[n_,k_]:=Coefficient[Series[1/f[k]/f[k-1],{x,0,n}],x,n]
  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k-1, k-1, 2)*stirling(n-j+k, k, 2)); \\ Seiichi Manyama, May 14 2025

Formula

A(n,k) is the coefficient of x^n in 1/((1-k*x) * (1-(k-1)*x)^2 * ... * (1-x)^2).
A(n,k) = Sum_{j=0..n} Stirling2(j+k-1,k-1) * Stirling2(n-j+k,k) for k >= 1. - Seiichi Manyama, May 14 2025

A383880 a(n) = [x^n] 1/Product_{k=0..n-1} (1 - k*x)^2.

Original entry on oeis.org

1, 0, 3, 72, 2307, 95060, 4817990, 290523576, 20333487251, 1621036680120, 145057745669850, 14399349523416000, 1570425994090538574, 186674663305762642296, 24021930409036829669036, 3327140929951823209016400, 493515678917684006649451651, 78054583374364036172432641200
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k - 1, n - 1], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
  • PARI
    a(n) = polcoef(1/prod(k=0, n-1, 1-k*x+x*O(x^n))^2, n);

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k-1,n-1) * Stirling2(2*n-k-1,n-1) for n > 0.
a(n) ~ 3^(3*n - 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(2*n - 1/2) * exp(n) * (3 - 2*w)^n * w^(2*n - 3/2)), where w = -LambertW(-3*exp(-3/2)/2). - Vaclav Kotesovec, May 14 2025
Showing 1-2 of 2 results.