cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383843 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 23, 4, 0, 1, 20, 86, 72, 5, 0, 1, 30, 230, 480, 201, 6, 0, 1, 42, 505, 2000, 2307, 522, 7, 0, 1, 56, 973, 6300, 14627, 10044, 1291, 8, 0, 1, 72, 1708, 16464, 65002, 95060, 40792, 3084, 9, 0, 1, 90, 2796, 37632, 227542, 587580, 567240, 157440, 7181, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,      1,       1,        1, ...
  0, 2,    6,    12,     20,      30,       42, ...
  0, 3,   23,    86,    230,     505,      973, ...
  0, 4,   72,   480,   2000,    6300,    16464, ...
  0, 5,  201,  2307,  14627,   65002,   227542, ...
  0, 6,  522, 10044,  95060,  587580,  2725380, ...
  0, 7, 1291, 40792, 567240, 4817990, 29331038, ...
		

Crossrefs

Columns k=0..4 give A000007, A000027(n+1), A045618, A383841, A383842.
Main diagonal gives A350376.
A(n,n-1) gives A383880.

Programs

  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k, k, 2)*stirling(n-j+k, k, 2));

Formula

A(n,k) = Sum_{j=0..n} Stirling2(j+k,k) * Stirling2(n-j+k,k).

A383883 a(n) = [x^n] 1/((1 - n*x) * Product_{k=0..n-1} (1 - k*x)^2).

Original entry on oeis.org

1, 1, 11, 222, 6627, 262570, 12978758, 769079444, 53138842515, 4194648739710, 372421403333850, 36733739199892020, 3985122473105099406, 471598870326072262644, 60456151456891375730860, 8345905345383943433713800, 1234395864446065862689721475, 194738649118647202909304657910
Offset: 0

Views

Author

Seiichi Manyama, May 13 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n + k - 1, n - 1]*StirlingS2[2*n - k, n], {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 14 2025 *)
  • PARI
    a(n) = polcoef(1/((1-n*x)*prod(k=0, n-1, 1-k*x+x*O(x^n))^2), n);

Formula

a(n) = Sum_{k=0..n} Stirling2(n+k-1,n-1) * Stirling2(2*n-k,n) for n > 0.
a(n) = A287532(n,n).
a(n) ~ 3^(3*n - 1/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(2*n + 1/2) * exp(n) * (3 - 2*w)^n * w^(2*n - 1/2)), where w = -LambertW(-3*exp(-3/2)/2). - Vaclav Kotesovec, May 14 2025
Showing 1-2 of 2 results.