cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383900 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of Product_{j=0..k} (1 + j*x)/(1 - j*x).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 12, 18, 2, 0, 1, 20, 72, 42, 2, 0, 1, 30, 200, 312, 90, 2, 0, 1, 42, 450, 1400, 1152, 186, 2, 0, 1, 56, 882, 4650, 8000, 3912, 378, 2, 0, 1, 72, 1568, 12642, 38250, 40520, 12672, 762, 2, 0, 1, 90, 2592, 29792, 142002, 271770, 190400, 39912, 1530, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,      1, ...
  0, 2,   6,   12,    20,     30, ...
  0, 2,  18,   72,   200,    450, ...
  0, 2,  42,  312,  1400,   4650, ...
  0, 2,  90, 1152,  8000,  38250, ...
  0, 2, 186, 3912, 40520, 271770, ...
		

Crossrefs

Columns k=0..4 give A000007, A040000, A068293(n+1), A383910, A383911.
Main diagonal gives A350366.
A(n,n-1) gives A383767.

Programs

  • PARI
    a(n, k) = sum(j=0, k, abs(stirling(k+1, j+1, 1))*stirling(j+n, k, 2));

Formula

A(n,k) = Sum_{j=0..k} |Stirling1(k+1,j+1)| * Stirling2(j+n,k).

A383842 Expansion of 1/((1-x) * (1-2*x) * (1-3*x) * (1-4*x))^2.

Original entry on oeis.org

1, 20, 230, 2000, 14627, 95060, 567240, 3174400, 16904053, 86549620, 429352330, 2075659600, 9822847079, 45665147700, 209129160300, 945597624000, 4229196800505, 18738054705300, 82347219011950, 359322115058000, 1558151553849131, 6719660438870420, 28838298857544080
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Crossrefs

Column k=4 of A383843.
Cf. A000453.

Programs

  • PARI
    a(n) = sum(k=0, n, stirling(k+4, 4, 2)*stirling(n-k+4, 4, 2));

Formula

a(n) = 20*a(n-1) - 170*a(n-2) + 800*a(n-3) - 2273*a(n-4) + 3980*a(n-5) - 4180*a(n-6) + 2400*a(n-7) - 576*a(n-8).
a(n) = Sum_{k=0..n} Stirling2(k+4,4) * Stirling2(n-k+4,4).

A383841 Expansion of 1/((1-x) * (1-2*x) * (1-3*x))^2.

Original entry on oeis.org

1, 12, 86, 480, 2307, 10044, 40792, 157440, 584693, 2107596, 7420218, 25634880, 87207559, 292924668, 973531964, 3206704800, 10482373305, 34042285260, 109930177630, 353238247200, 1130137576331, 3601849005372, 11440208166816, 36225346150080, 114391746903037, 360325587293004
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Crossrefs

Column k=3 of A383843.

Programs

  • PARI
    a(n) = sum(k=0, n, stirling(k+3, 3, 2)*stirling(n-k+3, 3, 2));

Formula

a(n) = 12*a(n-1) - 58*a(n-2) + 144*a(n-3) - 193*a(n-4) + 132*a(n-5) - 36*a(n-6).
a(n) = Sum_{k=0..n} Stirling2(k+3,3) * Stirling2(n-k+3,3).
Showing 1-3 of 3 results.