cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383843 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 23, 4, 0, 1, 20, 86, 72, 5, 0, 1, 30, 230, 480, 201, 6, 0, 1, 42, 505, 2000, 2307, 522, 7, 0, 1, 56, 973, 6300, 14627, 10044, 1291, 8, 0, 1, 72, 1708, 16464, 65002, 95060, 40792, 3084, 9, 0, 1, 90, 2796, 37632, 227542, 587580, 567240, 157440, 7181, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,      1,       1,        1, ...
  0, 2,    6,    12,     20,      30,       42, ...
  0, 3,   23,    86,    230,     505,      973, ...
  0, 4,   72,   480,   2000,    6300,    16464, ...
  0, 5,  201,  2307,  14627,   65002,   227542, ...
  0, 6,  522, 10044,  95060,  587580,  2725380, ...
  0, 7, 1291, 40792, 567240, 4817990, 29331038, ...
		

Crossrefs

Columns k=0..4 give A000007, A000027(n+1), A045618, A383841, A383842.
Main diagonal gives A350376.
A(n,n-1) gives A383880.

Programs

  • PARI
    a(n, k) = sum(j=0, n, stirling(j+k, k, 2)*stirling(n-j+k, k, 2));

Formula

A(n,k) = Sum_{j=0..n} Stirling2(j+k,k) * Stirling2(n-j+k,k).

A383892 Expansion of 1/( ((1-x)*(1-2*x)*(1-3*x)*(1-4*x))^2 * (1-5*x) ).

Original entry on oeis.org

1, 25, 355, 3775, 33502, 262570, 1880090, 12574850, 79778303, 485441135, 2856558005, 16358449625, 91615095204, 503740623720, 2727832278900, 14584759018500, 77152991893005, 404503014170325, 2104862289863575, 10883633564375875, 55976319375728506, 286601257317512950
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Crossrefs

Column k=5 of A287532.
Cf. A383842.

Programs

  • Magma
    [1] cat [&+[StirlingSecond(k+4,4) * StirlingSecond(n-k+5,5): k in [0..n]]: n in [1..25]]; // Vincenzo Librandi, May 23 2025
  • Mathematica
    a[n_]:=Sum [StirlingS2[k+4,4]*StirlingS2[n-k+5,5],{k,0,n}];Table[a[n],{n,0,19}] (* Vincenzo Librandi, May 23 2025 *)
  • PARI
    a(n) = sum(k=0, n, stirling(k+4, 4, 2)*stirling(n-k+5, 5, 2));
    

Formula

a(n) = 25*a(n-1) - 270*a(n-2) + 1650*a(n-3) - 6273*a(n-4) + 15345*a(n-5) - 24080*a(n-6) + 23300*a(n-7) - 12576*a(n-8) + 2880*a(n-9).
a(n) = Sum_{k=0..n} Stirling2(k+4,4) * Stirling2(n-k+5,5).
Showing 1-2 of 2 results.