cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351804 a(n) = [x^n] 1/Product_{j=1..n} (1 - j^n*x).

Original entry on oeis.org

1, 1, 21, 28800, 6702928485, 485036145970949475, 17284020213927891173772415260, 439885788765576174397949231373608504971360, 10926401685584312222862714944076761452123218197332439365413, 346792877099311752547903589477147000220953930332269111366383185472249165168535
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2022

Keywords

Examples

			a(2) = (1*1)^2 + (1*2)^2 + (2*2)^2 = 1 + 4 + 16 = 21.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, p) option remember; `if`(k=0, 1,
          add(b(j, k-1, p)*j^p, j=1..n))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..9);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^n*x), {k, 1, n}], {x, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, May 13 2025 *)

Formula

a(n) = Sum_{p in {1..n}^n : p_i <= p_{i+1}} Product_{j=1..n} p_j^n.
a(n) ~ c * n^(n^2), where c = 1/QPochhammer(exp(-1)) = 1.98244090741... - Vaclav Kotesovec, May 13 2025

A384044 a(n) = [x^n] Product_{k=1..n} (1 + k^3*x) / (1 - k^3*x).

Original entry on oeis.org

1, 2, 162, 75672, 104312000, 317309605650, 1803288012589602, 17180843554017736544, 254292459616733559570432, 5525508321588276184345621650, 168733575675064578625834983478850, 6994229599670887851052241626545021912, 382562895157136117988572795915676719695680
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1+k^3*x)/(1-k^3*x), {k, 1, n}], {x, 0, n}], {n, 0, 12}]

Formula

a(n) ~ c * d^n * n!^3 / n^2, where d = 37.604795475701444958019770120055586495991039059348094619704... and c = 0.063895861310548119570865800164582089372152350471371583403...
Showing 1-2 of 2 results.