cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A213455 90*A002451(n).

Original entry on oeis.org

90, 1260, 13230, 126720, 1171170, 10663380, 96461910, 870123240, 7838973450, 70582218300, 635365793790, 5718795460560, 51471172410930, 463248604762020, 4169269655112870, 37523555745034680, 337712517101387610, 3039414715496790540, 27354740685808323150, 246192699157623741600, 2215734424360009007490
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2012

Keywords

References

  • S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A002451. A diagonal of the triangle in A241171.

Formula

From Chai Wah Wu, Jan 30 2018: (Start)
a(n) = 14*a(n-1) - 49*a(n-2) + 36*a(n-3) for n > 2.
G.f.: 90/((1 - x)*(1 - 4*x)*(1 - 9*x)). (End)

A156289 Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

T(n,k) is the number of partitions of a set of size 2*n into k blocks of even size [Comtet]. For partitions into odd sized blocks see A136630.
See A241171 for the triangle of ordered set partitions of the set {1,2,...,2*n} into k even sized blocks. - Peter Bala, Aug 20 2014
This triangle T(n,k) gives the sum over the M_3 multinomials A036040 for the partitions of 2*n with k even parts, for 1 <= k <= n. See the triangle A257490 with sums over the entries with k parts, and the Hartmut F. W. Hoft program. - Wolfdieter Lang, May 13 2015

Examples

			The triangle begins
  n\k|..1.....2......3......4......5......6
  =========================================
  .1.|..1
  .2.|..1.....3
  .3.|..1....15.....15
  .4.|..1....63....210....105
  .5.|..1...255...2205...3150....945
  .6.|..1..1023..21120..65835..51975..10395
  ..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
  (12)(34)(56), (12)(35)(46), (12)(36)(45),
  (13)(24)(56), (13)(25)(46), (13)(26)(45),
  (14)(23)(56), (14)(25)(36), (14)(26)(35),
  (15)(23)(46), (15)(24)(36), (15)(26)(34),
  (16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
 T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
 T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
 T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - _Wolfdieter Lang_, May 13 2015
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.

Crossrefs

Diagonal T(n, n) is A001147, subdiagonal T(n+1, n) is A001880.
2nd column variant T(n, 2)/3, for 2<=n, is A002450.
3rd column variant T(n, 3)/15, for 3<=n, is A002451.
Sum of the n-th row is A005046.

Programs

  • Maple
    T := proc(n,k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
    (2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 1 to 8 do seq(T(n,k), k=1..n) od; # Peter Luschny, Sep 04 2017
  • Mathematica
    T[n_,k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
    (* alternate computation with function triangle[] defined in A257490 *)
    a[n_]:=Map[Apply[Plus,#]&,triangle[n],{2}]
    (* Hartmut F. W. Hoft, Apr 26 2015 *)

Formula

Recursion: T(n,1)=1 for 1<=n; T(n,k)=0 for 1<=n
Generating function for the k-th column of the triangle T(i+k,k):
G(k,x) = Sum_{i>=0} T(i+k,k)*x^i = Product_{j=1..k} (2*j-1)/(1-j^2*x).
Closed form expression: T(n,k) = (2/(k!*2^k))*Sum_{j=1..k} (-1)^(k-j)*binomial(2*k,k-j)*j^(2*n).
From Peter Bala, Feb 21 2011: (Start)
GENERATING FUNCTION
E.g.f. (including a constant 1):
(1)... F(x,z) = exp(x*(cosh(z)-1))
= Sum_{n>=0} R(n,x)*z^(2*n)/(2*n)!
= 1 + x*z^2/2! + (x + 3*x^2)*z^4/4! + (x + 15*x^2 + 15*x^3)*z^6/6! + ....
ROW POLYNOMIALS
The row polynomials R(n,x) begin
... R(1,x) = x
... R(2,x) = x + 3*x^2
... R(3,x) = x + 15*x^2 + 15*x^3.
The egf F(x,z) satisfies the partial differential equation
(2)... d^2/dz^2(F) = x*F + x*(2*x+1)*F' + x^2*F'',
where ' denotes differentiation with respect to x. Hence the row polynomials satisfy the recurrence relation
(3)... R(n+1,x) = x*{R(n,x) + (2*x+1)*R'(n,x) + x*R''(n,x)}
with R(0,x) = 1. The recurrence relation for T(n,k) given above follows from this.
(4)... T(n,k) = (2*k-1)!!*A036969(n,k).
(End)

A036969 Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1

Keywords

Comments

Or, triangle of central factorial numbers T(2n,2k) (in Riordan's notation).
Can be used to calculate the Bernoulli numbers via the formula B_2n = (1/2)*Sum_{k = 1..n} (-1)^(k+1)*(k-1)!*k!*T(n,k)/(2*k+1). E.g., n = 1: B_2 = (1/2)*1/3 = 1/6. n = 2: B_4 = (1/2)*(1/3 - 2/5) = -1/30. n = 3: B_6 = (1/2)*(1/3 - 2*5/5 + 2*6/7) = 1/42. - Philippe Deléham, Nov 13 2003
From Peter Bala, Sep 27 2012: (Start)
Generalized Stirling numbers of the second kind. T(n,k) is equal to the number of partitions of the set {1,1',2,2',...,n,n'} into k disjoint nonempty subsets V1,...,Vk such that, for each 1 <= j <= k, if i is the least integer such that either i or i' belongs to Vj then {i,i'} is a subset of Vj. An example is given below.
Thus T(n,k) may be thought of as a two-colored Stirling number of the second kind. See Matsumoto and Novak, who also give another combinatorial interpretation of these numbers. (End)

Examples

			Triangle begins:
  1;
  1,    1;
  1,    5,      1;
  1,   21,     14,      1;
  1,   85,    147,     30,     1;
  1,  341,   1408,    627,    55,    1;
  1, 1365,  13013,  11440,  2002,   91,   1;
  1, 5461, 118482, 196053, 61490, 5278, 140, 1;
  ...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
		

References

  • L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

Crossrefs

Columns are A002450, A002451.
Diagonals are A000330 and A060493.
Transpose of A008957.
(0,0)-based version: A269945.
Cf. A008955, A008956, A156289, A135920 (row sums), A204579 (inverse), A000290.

Programs

  • Haskell
    a036969 n k = a036969_tabl !! (n-1) (k-1)
    a036969_row n = a036969_tabl !! (n-1)
    a036969_tabl = iterate f [1] where
       f row = zipWith (+)
         ([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
    -- Reinhard Zumkeller, Feb 18 2013
  • Maple
    A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
  • Mathematica
    t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
    t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
  • PARI
    T(n,k)=if(1M. F. Hasler, Feb 03 2012
    
  • PARI
    T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!)  \\ M. F. Hasler, Feb 03 2012
    
  • Sage
    def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
    for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
    

Formula

T(n,k) = A156289(n,k)/A001147(k). - Peter Bala, Feb 21 2011
From Peter Bala, Oct 14 2011: (Start)
O.g.f.: Sum_{n >= 1} x^n*t^n/Product_{k = 1..n} (1 - k^2*t^2) = x*t + (x + x^2)*t^2 + (x + 5*x^2 + x^3)*t^3 + ....
Define polynomials x^[2*n] = Product_{k = 0..n-1} (x^2 - k^2). This triangle gives the coefficients in the expansion of the monomials x^(2*n) as a linear combination of x^[2*m], 1 <= m <= n. For example, row 4 gives x^8 = x^[2] + 21*x^[4] + 14*x^[6] + x^[8].
A008955 is a signed version of the inverse.
The n-th row sum = A135920(n). (End)
T(n,k) = (2/(2*k)!)*Sum_{j=0..k-1} (-1)^(j+k+1) * binomial(2*k,j+k+1) * (j+1)^(2*n). This formula is valid for n >= 0 and 0 <= k <= n. - Peter Luschny, Feb 03 2012
From Peter Bala, Sep 27 2012: (Start)
Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/((2*n)!/2^n). A generating function for the triangle is E(t*(E(x)-1)) = 1 + t*x + t*(1 + t)*x^2/6 + t*(1 + 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1, 1, 6, 90, ...] is given by (2*n)!/2^n. Cf. A008277 which has generating function exp(t*(exp(x)-1)). An e.g.f. is E(t*(E(x^2/2)-1)) = 1 + t*x^2/2! + t*(1 + t)*x^4/4! + t*(1 + 5*t + t^2)*x^6/6! + ....
Put c(n) := (2*n)!/2^n. The column k generating function is (1/c(k))*(E(x)-1)^k = Sum_{n >= k} T(n,k)*x^n/c(n). The inverse array is A204579.
The production array begins:
1, 1;
0, 4, 1;
0, 0, 9, 1;
0, 0, 0, 16, 1;
... (End)
x^n = Sum_{k=1..n} T(n,k)*Product_{i=0..k-1} (x-i^2), see Stanley link. - Michel Marcus, Nov 19 2014; corrected by Kolosov Petro, Jul 26 2023
From Kolosov Petro, Jul 26 2023: (Start)
T(n,k) = (1/(2*k)!) * Sum_{j=0..2k} binomial(2k, j)*(-1)^j*(k - j)^(2n).
T(n,k) = (1/(k*(2k-1)!)) * Sum_{j=0..k} (-1)^(k-j)*binomial(2k, k-j)*j^(2n). (End)

Extensions

More terms from Vladeta Jovovic, Apr 16 2000

A269945 Triangle read by rows. Stirling set numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + k^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 21, 14, 1, 0, 1, 85, 147, 30, 1, 0, 1, 341, 1408, 627, 55, 1, 0, 1, 1365, 13013, 11440, 2002, 91, 1, 0, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 0, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1
Offset: 0

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers T(2*n, 2*k) (cf. A036969).
The analog for the Stirling cycle numbers is A269944.

Examples

			Triangle starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1,   1]
  [3] [0, 1,   5,    1]
  [4] [0, 1,  21,   14,   1]
  [5] [0, 1,  85,  147,  30,  1]
  [6] [0, 1, 341, 1408, 627, 55, 1]
		

Crossrefs

Columns k=0..5 give A000007, A000012, A002450(n-1), A002451(n-3), A383838(n-4), A383840(n-5).
Variants are: A008957, A036969.
Cf. A007318 (order 0), A048993 (order 1), A269948 (order 3).
Cf. A000330 (subdiagonal), A002450 (column 2), A135920 (row sums), A269941, A269944 (Stirling cycle), A298851 (central terms).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 0 to 9 do seq(T(n, k), k=0..n) od;
    # Alternatively with the P-transform (cf. A269941):
    A269945_row := n -> PTrans(n, n->`if`(n=1, 1, 1/(n*(4*n-2))), (n, k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269945_row(n)), n=0..8);
    # Using the exponential generating function:
    egf := 1 + t^2*(cosh(2*sinh(t*x/2)/t));
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, 2*(n-k+1)), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # Peter Luschny, Feb 29 2024
  • Mathematica
    T[n_, n_] = 1; T[n_ /; n >= 0, k_] /; 0 <= k < n := T[n, k] = T[n - 1, k - 1] + k^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Nov 27 2017 *)
  • Sage
    # uses[PtransMatrix from A269941]
    stirset2 = lambda n: 1 if n == 1 else 1/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stirset2, norm)
    for m in M: print(m)

Formula

T(n, k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = 1/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n, 2) = (4^(n - 1) - 1)/3 for n >= 2 (cf. A002450).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n, k) = (1/(2*k)!)*Sum_{j=0..2*k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n).
T(n, k) = Sum_{j=2*k..2*n} (-k)^(2*n - j)*binomial(2*n, j)*Stirling2(j, 2*k).
T(n, k) = Sum_{j=0..2*n} (-1)^(j - k)*Stirling2(2*n - j, k)*Stirling2(j, k). (End)
T(n, k) = (2*n)! [t^(2*(n-k+1))] [x^(2*n)] (1 + t^2*(cosh(2*sinh(t*x/2)/t))). - Peter Luschny, Feb 29 2024

A381512 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = (2*n+k)!/k! * [x^(2*n+k)] sinh(x)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 10, 16, 1, 0, 1, 20, 91, 64, 1, 0, 1, 35, 336, 820, 256, 1, 0, 1, 56, 966, 5440, 7381, 1024, 1, 0, 1, 84, 2352, 24970, 87296, 66430, 4096, 1, 0, 1, 120, 5082, 90112, 631631, 1397760, 597871, 16384, 1, 0, 1, 165, 10032, 273988, 3331328, 15857205, 22368256, 5380840, 65536, 1, 0
Offset: 0

Author

Seiichi Manyama, May 11 2025

Keywords

Examples

			Square array begins:
  1, 1,    1,     1,       1,        1, ...
  0, 1,    4,    10,      20,       35, ...
  0, 1,   16,    91,     336,      966, ...
  0, 1,   64,   820,    5440,    24970, ...
  0, 1,  256,  7381,   87296,   631631, ...
  0, 1, 1024, 66430, 1397760, 15857205, ...
		

Crossrefs

Columns k=0..7 give A000007, A000012, A000302, A002452(n+1), A166984, A002453, 4^n * A002451(n), A381513.
Main diagonal gives A383837.

Programs

  • PARI
    a(n, k) = (2*n+k)!/k!*polcoef(sinh(x+x*O(x^(2*n+k)))^k, 2*n+k);

Formula

G.f. of column k: 1/Product_{j=0..floor(k/2)} (1 - (k-2*j)^2*x).
A(n,k) = k^2 * A(n-1,k) + A(n,k-2) for k > 1.
A(n,k) = (1/(2^k*k!)) * Sum_{j=0..k} (-1)^j * (k-2*j)^(2*n+k) * binomial(k,j).

A383838 Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x)).

Original entry on oeis.org

1, 30, 627, 11440, 196053, 3255330, 53157079, 860181300, 13850000505, 222384254950, 3565207699131, 57106865357880, 914281747641757, 14633655168987690, 234184807922193183, 3747373855152257980, 59961734043737254209, 959421515974412698350, 15351048197153778821635
Offset: 0

Author

Seiichi Manyama, May 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (2*16^(n+3)-9^(n+4)+14*4^(n+3)-7)/2520;

Formula

a(n) = A269945(n+4,4).
a(n) = 30*a(n-1) - 273*a(n-2) + 820*a(n-3) - 576*a(n-4).
a(n) = (2*16^(n+3) - 9^(n+4) + 14*4^(n+3) - 7)/2520.
sinh(x)^8/8! = Sum_{k>=0} 4^k * a(k) * x^(2*k+8)/(2*k+8)!.
a(n) = (1/8!) * Sum_{k=0..8} (-1)^k * (4-k)^(2*n+8) * binomial(8,k).
a(n) = Sum_{k=0..2*n} (-4)^k * binomial(2*n+8,k) * Stirling2(2*n-k+8,8).
a(n) = Sum_{k=0..2*n} (-1)^k * Stirling2(k+4,4) * Stirling2(2*n-k+4,4).

A166132 a(n) = 1 + (4*9^n - 9*4^n) / 5.

Original entry on oeis.org

1, 37, 469, 4789, 45397, 417781, 3796885, 34319413, 309464533, 2787540085, 25097297941, 225913430197, 2033371866709, 18300950780149, 164710972940437, 1482408420140341, 13341714435968725, 120075584542541173
Offset: 1

Author

Jonathan Vos Post, Oct 06 2010

Keywords

Comments

Variable N_{LNR}(n) of the number of grid points triangulating snowflakes (Neuberger et al.).

Programs

  • Maple
    A := proc(n) 1+(4*9^n-9*4^n)/5 ; end proc: seq(A(n),n=1..60) ;
  • Mathematica
    LinearRecurrence[{14, -49, 36}, {1, 37, 469}, 50] (* G. C. Greubel, Apr 26 2016 *)
    Table[1 + (4*9^n - 9*4^n)/5, {n, 24}] (* or *)
    Rest@ CoefficientList[Series[-x (1 + 23 x)/((x - 1) (4 x - 1) (9 x - 1)), {x, 0, 24}], x] (* Michael De Vlieger, Apr 27 2016 *)

Formula

a(n) = 14*a(n-1) - 49*a(n-2) + 36*a(n-3).
G.f.: -x*(1+23*x) / ((x-1)*(4*x-1)*(9*x-1)).
a(n) = A002451(n-1) + 23*A002451(n-2).
E.g.f.: (1/5)*(5*exp(x) + 4*exp(9*x) - 9*exp(4*x)). - G. C. Greubel, Apr 26 2016
Showing 1-7 of 7 results.