cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A160562 Triangle of scaled central factorial numbers, T(n,k) = A008958(n,n-k).

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 91, 35, 1, 1, 820, 966, 84, 1, 1, 7381, 24970, 5082, 165, 1, 1, 66430, 631631, 273988, 18447, 286, 1, 1, 597871, 15857205, 14057043, 1768195, 53053, 455, 1, 1, 5380840, 397027996, 704652312, 157280838, 8187608, 129948, 680, 1
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2009

Keywords

Comments

This is table 4 on page 12 of Gelineau and Zeng, read downwards by columns.
Reversing rows gives A008958.
Apparently the table can also be obtained by deleting each second row and column of A136630.

Examples

			Triangle starts:
  1;
  1,     1;
  1,    10,      1;
  1,    91,     35,      1;
  1,   820,    966,     84,     1;
  1,  7381,  24970,   5082,   165,   1;
  1, 66430, 631631, 273988, 18447, 286, 1;
  ...
		

Crossrefs

Cf. A002452 (column k=1), A002453 (column k=2), A000447 (right column k=n-1), A185375 (right column k=n-2).

Programs

  • Maple
    A160562 := proc(n,k) npr := 2*n+1 ; kpr := 2*k+1 ; sinh(t*sinh(x)) ; npr!*coeftayl(%,x=0,npr) ; coeftayl(%,t=0,kpr) ; end: seq(seq(A160562(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    T[n_, k_] := Sum[(-1)^(k - m)*(2m + 1)^(2n + 1)*Binomial[2k, k + m]/(k + m + 1), {m, 0, k}]/(4^k*(2k)!);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2017 *)

Formula

T(n,k) = (1/((2*k)!*4^k)) * Sum_{m=0..k} (-1)^(k-m)*A039599(k,m)*(2*m+1)^(2*n). - Werner Schulte, Nov 01 2015
T(n,k) = ((-1)^(n-k)*(2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sin(x)^(2*k+1) = ((2*n+1)!/(2*k+1)!) * [x^(2*n+1)]sinh(x)^(2*k+1). Note that sin(x)^(2*k+1) = (Sum_{i=0..k} (-1)^i*binomial(2*k+1,k-i)*sin((2*i+1)*x))/(2^(2*k)). - Jianing Song, Oct 29 2023

Extensions

More terms from R. J. Mathar, Sep 09 2009

A002453 Central factorial numbers: 2nd subdiagonal of A008958.

Original entry on oeis.org

1, 35, 966, 24970, 631631, 15857205, 397027996, 9931080740, 248325446061, 6208571999575, 155218222621826, 3880490869237710, 97012589464171291, 2425317596203339145, 60632965641474990456, 1515824372664398367880
Offset: 0

Views

Author

Keywords

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.

Crossrefs

Right-hand column 2 in triangle A008958.
Cf. A002452.

Programs

  • GAP
    List([0..20],n->(5^(2*n+4)-3^(2*n+5)+2)/384); # Muniru A Asiru, Dec 20 2018
    
  • Magma
    [(5^(2*n+4)-3^(2*n+5)+2)/384: n in [0..20]]; // G. C. Greubel, Jul 04 2019
    
  • Maple
    A002453:=-1/(z-1)/(25*z-1)/(9*z-1); # Simon Plouffe (from his 1992 dissertation).
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-9x)(1-25x)),{x,0,20}],x] (* or *) LinearRecurrence[{35,-259,225},{1,35,966},20] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    vector(20, n, n--; (5^(2*n+4)-3^(2*n+5)+2)/384) \\ G. C. Greubel, Jul 04 2019
    
  • Sage
    [(5^(2*n+4)-3^(2*n+5)+2)/384 for n in (0..20)] # G. C. Greubel, Jul 04 2019

Formula

G.f.: 1/((1 - x)*(1 - 9*x)*(1 - 25*x)).
a(n) = (5^(2*n + 4) - 3^(2*n + 5) + 2)/384.
E.g.f.: sinh(x)^5/120 = Sum_{n>=0} a(n)*x^(2*n + 5)/(2*n + 5)!. - Vladimir Kruchinin, Sep 30 2012
a(n) = det(|v(i+3,j+2)|, 1 <= i,j <= n), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956). - Mircea Merca, Apr 06 2013
a(n) = 35*a(n-1) -259*a(n-2) +225*a(n-3), with a(0) = 1, a(1) = 35, a(2) = 966. - Harvey P. Dale, Feb 25 2015
a(n) = 25*a(n-1) + A002452(n+1), with a(0) = 1. - Nadia Lafreniere, Aug 08 2022

A002452 a(n) = (9^n - 1)/8.

Original entry on oeis.org

0, 1, 10, 91, 820, 7381, 66430, 597871, 5380840, 48427561, 435848050, 3922632451, 35303692060, 317733228541, 2859599056870, 25736391511831, 231627523606480, 2084647712458321, 18761829412124890, 168856464709124011, 1519708182382116100, 13677373641439044901, 123096362772951404110
Offset: 0

Views

Author

Keywords

Comments

From David W. Wilson: Numbers triangular, differences square.
To be precise, the differences are the squares of the powers of three with positive indices. Hence a(n+1) - a(n) = (A000244(n+1))^2 = A001019(n+1). [Added by Ant King, Jan 05 2011]
Partial sums of A001019. This is m-th triangular number, where m is partial sums of A000244. a(n) = A000217(A003462(n)). - Lekraj Beedassy, May 25 2004
With offset 0, binomial transform of A003951. - Philippe Deléham, Jul 22 2005
Numbers in base 9: 1, 11, 111, 1111, 11111, 111111, 1111111, etc. - Zerinvary Lajos, Apr 26 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=9, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 2, a(n-1) = (-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010
From Hieronymus Fischer, Jan 30 2013: (Start)
Least index k such that A052382(k) >= 10^(n-1), for n > 0.
Also index k such that A052382(k) = (10^n-1)/9, n > 0.
A052382(a(n)) is the least zerofree number with n digits, for n > 0.
For n > 1: A052382(a(n)-1) is the greatest zerofree number with n-1 digits. (End)
For n > 0, 4*a(n) is the total number of holes in a certain triangle fractal (start with 9 triangles, 4 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015
For n > 0, a(n) is the sum of the numerators and denominators of the reduced fractions 0 < (b/3^(n-1)) < 1 plus 1. Example for n=3 gives fractions 1/9, 2/9, 1/3, 4/9, 5/9, 2/3, 7/9, and 8/9 plus 1 has sum of numerators and denominators +1 = a(3) = 91. - J. M. Bergot, Jul 11 2015
Except for 0 and 1, all terms are Brazilian repunits numbers in base 9, so belong to A125134. All these terms are composite because a(n) is the ((3^n - 1)/2)-th triangular number. - Bernard Schott, Apr 23 2017
These are also the second steps after the junctions of the Collatz trajectories of 2^(2k-1)-1 and 2^2k-1. - David Rabahy, Nov 01 2017

Examples

			a(4) = (9^4 - 1)/8 = 820 = 1111_9 = (1/2) * 40 * 41 is the ((3^4 - 1)/2)-th = 40th triangular number. - _Bernard Schott_, Apr 23 2017
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 112.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 36.

Crossrefs

Right-hand column 1 in triangle A008958.

Programs

Formula

From Philippe Deléham, Mar 13 2004: (Start)
a(n) = 9*a(n-1) + 1; a(1) = 1.
G.f.: x / ((1-x)*(1-9*x)). (End)
a(n) = 10*a(n-1) - 9*a(n-2). - Ant King, Jan 05 2011
a(n) = floor(A000217(3^n)/4) - A033113(n-1). - Arkadiusz Wesolowski, Feb 14 2012
Sum_{n>0} a(n)*(-1)^(n+1)*x^(2*n+1)/(2*n+1)! = (1/6)*sin(x)^3. - Vladimir Kruchinin, Sep 30 2012
a(n) = A011540(A217094(n-1)) - A217094(n-1) + 2, n > 0. - Hieronymus Fischer, Jan 30 2013
a(n) = 10^(n-1) + 2 - A217094(n-1). - Hieronymus Fischer, Jan 30 2013
a(n) = det(|v(i+2,j+1)|, 1 <= i,j <= n-1), where v(n,k) are central factorial numbers of the first kind with odd indices (A008956) and n > 0. - Mircea Merca, Apr 06 2013
a(n) = Sum_{k=0..n-1} 9^k. - Doug Bell, May 26 2017
E.g.f.: exp(5*x)*sinh(4*x)/4. - Stefano Spezia, Mar 11 2023

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
Offset changed from 1 to 0 and added 0 by Vincenzo Librandi, Jun 01 2011

A136630 Triangular array: T(n,k) counts the partitions of the set [n] into k odd sized blocks.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 0, 10, 0, 1, 0, 0, 16, 0, 20, 0, 1, 0, 1, 0, 91, 0, 35, 0, 1, 0, 0, 64, 0, 336, 0, 56, 0, 1, 0, 1, 0, 820, 0, 966, 0, 84, 0, 1, 0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1, 0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1, 0, 0, 1024, 0, 87296, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2008

Keywords

Comments

For partitions into blocks of even size see A156289.
Essentially the unsigned matrix inverse of triangle A121408.
From Peter Bala, Jul 28 2014: (Start)
Define a polynomial sequence x_(n) by setting x_(0) = 1 and for n = 1,2,... setting x_(n) = x*(x + n - 2)*(x + n - 4)*...*(x + n - 2*(n - 1)). Then this table is the triangle of connection constants for expressing the monomial polynomials x^n in terms of the basis x_(k), that is, x^n = sum {k = 0..n} T(n,k)*x_(k) for n = 0,1,2,.... An example is given below.
Let M denote the lower unit triangular array A119467 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle, omitting the first row and column, equals the infinite matrix product M(0)*M(1)*M(2)*.... (End)
Also the Bell transform of A000035(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,   1;
  0, 1,   0,    1;
  0, 0,   4,    0,    1;
  0, 1,   0,   10,    0,     1;
  0, 0,  16,    0,   20,     0,    1;
  0, 1,   0,   91,    0,    35,    0,    1;
  0, 0,  64,    0,  336,     0,   56,    0,   1;
  0, 1,   0,  820,    0,   966,    0,   84,   0,   1;
  0, 0, 256,    0, 5440,     0, 2352,    0, 120,   0, 1;
  0, 1,   0, 7381,    0, 24970,    0, 5082,   0, 165, 0, 1;
T(5,3) = 10. The ten partitions of the set [5] into 3 odd-sized blocks are
(1)(2)(345), (1)(3)(245), (1)(4)(235), (1)(5)(234), (2)(3)(145),
(2)(4)(135), (2)(5)(134), (3)(4)(125), (3)(5)(124), (4)(5)(123).
Connection constants: Row 5 = [0,1,0,10,0,1]. Hence, with the polynomial sequence x_(n) as defined in the Comments section we have x^5 = x_(1) + 10*x_(3) + x_(5) = x + 10*x*(x+1)*(x-1) + x*(x+3)*(x+1)*(x-1)*(x-3).
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 225-226.

Crossrefs

Cf. A121408; A136631 (antidiagonal sums), A003724 (row sums), A136632; A002452 (column 3), A002453 (column 5); A008958 (central factorial triangle), A156289. A185690, A196776.

Programs

  • Maple
    A136630 := proc (n, k) option remember; if k < 0 or n < k then 0 elif k = n then 1 else procname(n-2, k-2) + k^2*procname(n-2, k) end if end proc: seq(seq(A136630(n, k), k = 1 .. n), n = 1 .. 12); # Peter Bala, Jul 27 2014
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> (n+1) mod 2, 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    t[n_, k_] := Coefficient[ x^k/Product[ 1 - (2*j + k - 2*Quotient[k, 2])^2*x^2, {j, 0, k/2}] + x*O[x]^n, x, n]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2013, after Pari *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 13;
    M = BellMatrix[Mod[#+1, 2]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    {T(n,k)=polcoeff(x^k/prod(j=0,k\2,1-(2*j+k-2*(k\2))^2*x^2 +x*O(x^n)),n)}

Formula

G.f. for column k: x^k/Product_{j=0..floor(k/2)} (1 - (2*j + k-2*floor(k/2))^2 * x^2).
G.f. for column 2*k: x^(2*k)/Product_{j=0..k} (1 - (2*j)^2*x^2).
G.f. for column 2*k+1: x^(2*k+1)/Product_{j=0..k} (1 - (2*j+1)^2*x^2).
From Peter Bala, Feb 21 2011 (Start)
T(n,k) = 1/(2^k*k!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j-k)^n,
Recurrence relation T(n+2,k) = T(n,k-2) + k^2*T(n,k).
E.g.f.: F(x,z) = exp(x*sinh(z)) = Sum_{n>=0} R(n,x)*z^n/n! = 1 + x*z + x^2*z^2/2! + (x+x^3)*z^3/3! + ....
The row polynomials R(n,x) begin
R(1,x) = x
R(2,x) = x^2
R(3,x) = x+x^3.
The e.g.f. F(x,z) satisfies the partial differential equation d^2/dz^2(F) = x^2*F + x*F' + x^2*F'' where ' denotes differentiation w.r.t. x.
Hence the row polynomials satisfy the recurrence relation R(n+2,x) = x^2*R(n,x) + x*R'(n,x) + x^2*R''(n,x) with R(0,x) = 1.
The recurrence relation for T(n,k) given above follows from this.
(End)
For the corresponding triangle of ordered partitions into odd-sized blocks see A196776. Let P denote Pascal's triangle A070318 and put M = 1/2*(P-P^-1). M is A162590 (see also A131047). Then the first column of exp(t*M) lists the row polynomials for the present triangle. - Peter Bala, Oct 06 2011
Row generating polynomials equal D^n(exp(x*t)) evaluated at x = 0, where D is the operator sqrt(1+x^2)*d/dx. Cf. A196776. - Peter Bala, Dec 06 2011
From Peter Bala, Jul 28 2014: (Start)
E.g.f.: exp(t*sinh(x)) = 1 + t*x + t^2*x^2/2! + (t + t^3)*x^3/3! + ....
Hockey-stick recurrence: T(n+1,k+1) = Sum_{i = 0..floor((n-k)/2)} binomial(n,2*i)*T(n-2*i,k).
Recurrence equation for the row polynomials R(n,t):
R(n+1,t) = t*Sum_{k = 0..floor(n/2)} binomial(n,2*k)*R(n-2*k,t) with R(0,t) = 1. (End)

A000447 a(n) = 1^2 + 3^2 + 5^2 + 7^2 + ... + (2*n-1)^2 = n*(4*n^2 - 1)/3.

Original entry on oeis.org

0, 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680, 47905, 52394, 57155, 62196, 67525, 73150, 79079, 85320, 91881, 98770, 105995, 113564, 121485
Offset: 0

Views

Author

Keywords

Comments

4 times the variance of the area under an n-step random walk: e.g., with three steps, the area can be 9/2, 7/2, 3/2, 1/2, -1/2, -3/2, -7/2, or -9/2 each with probability 1/8, giving a variance of 35/4 or a(3)/4. - Henry Bottomley, Jul 14 2003
Number of standard tableaux of shape (2n-1,1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
Also a(n) = (1/6)*(8*n^3-2*n), n>0: structured octagonal diamond numbers (vertex structure 9). Cf. A059722 = alternate vertex; A000447 = structured diamonds; and structured tetragonal anti-diamond numbers (vertex structure 9). Cf. A096000 = alternate vertex; A100188 = structured anti-diamonds. Cf. A100145 for more on structured numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The n-th tetrahedral (or pyramidal) number is n(n+1)(n+2)/6. This sequence contains the tetrahedral numbers of A000292 obtained for n= 1,3,5,7,... (see A015219). - Valentin Bakoev, Mar 03 2009
Using three consecutive numbers u, v, w, (u+v+w)^3-(u^3+v^3+w^3) equals 18 times the numbers in this sequence. - J. M. Bergot, Aug 24 2011
This sequence is related to A070893 by A070893(2*n-1) = n*a(n)-sum(i=0..n-1, a(i)). - Bruno Berselli, Aug 26 2011
Number of integer solutions to 1-n <= x <= y <= z <= n-1. - Michael Somos, Dec 27 2011
Partial sums of A016754. - Reinhard Zumkeller, Apr 02 2012
Also the number of cubes in the n-th Haüy square pyramid. - Eric W. Weisstein, Sep 27 2017

Examples

			G.f. = x + 10*x^2 + 35*x^3 + 84*x^4 + 165*x^5 + 286*x^6 + 455*x^7 + 680*x^8 + ...
a(2) = 10 since (-1, -1, -1), (-1, -1, 0), (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 1, 1), (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) are the 10 solutions (x, y, z) of -1 <= x <= y <= z <= 1.
a(0) = 0, which corresponds to the empty sum.
		

References

  • G. Chrystal, Textbook of Algebra, Vol. 1, A. & C. Black, 1886, Chap. XX, Sect. 10, Example 2.
  • F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
  • C. V. Durell, Advanced Algebra, Volume 1, G. Bell & Son, 1932, Exercise IIIe, No. 4.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Column 1 in triangles A008956 and A008958.
A000447 is related to partitions of 2^n into powers of 2, as it is shown in the formula, example and cross-references of A002577. - Valentin Bakoev, Mar 03 2009

Programs

Formula

a(n) = binomial(2*n+1, 3) = A000292(2*n-1).
G.f.: x*(1+6*x+x^2)/(1-x)^4.
a(n) = -a(-n) for all n in Z.
a(n) = A000330(2*n)-4*A000330(n) = A000466(n)*n/3 = A000578(n)+A007290(n-2) = A000583(n)-2*A024196(n-1) = A035328(n)/3. - Henry Bottomley, Jul 14 2003
a(n+1) = (2*n+1)*(2*n+2)(2*n+3)/6. - Valentin Bakoev, Mar 03 2009
a(0)=0, a(1)=1, a(2)=10, a(3)=35, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, May 25 2012
a(n) = v(n,n-1), where v(n,k) is the central factorial numbers of the first kind with odd indices. - Mircea Merca, Jan 25 2014
a(n) = A005917(n+1) - A100157(n+1), where A005917 are the rhombic dodecahedral numbers and A100157 are the structured rhombic dodecahedral numbers (vertex structure 9). - Peter M. Chema, Jan 09 2016
For any nonnegative integers m and n, 8*(n^3)*a(m) + 2*m*a(n) = a(2*m*n). - Ivan N. Ianakiev, Mar 04 2017
E.g.f.: exp(x)*x*(1 + 4*x + (4/3)*x^2). - Wolfdieter Lang, Mar 11 2017
a(n) = A002412(n) + A016061(n-1), for n>0. - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*log(2) - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*log(2). (End)

Extensions

Chrystal and Durell references from R. K. Guy, Apr 02 2004

A008956 Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).

Original entry on oeis.org

1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0

Views

Author

Keywords

Comments

The n-th row gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first (see the discussion of central factorial numbers in A008955). - N. J. A. Sloane, Feb 01 2011
Descending row polynomials in x^2 evaluated at k generate odd coefficients of e.g.f. sin(arcsin(kt)/k): 1, x^2 - 1, 9x^4 - 10x^2 + 1, 225x^6 - 259x^4 + 34x^2 - 1, ... - Ralf Stephan, Jan 16 2005
From Johannes W. Meijer, Jun 18 2009: (Start)
We define (Pi/2)*Beta(n-1/2-z/2,n-1/2+z/2)/Beta(n-1/2,n-1/2) = (Pi/2)*Gamma(n-1/2-z/2)* Gamma(n-1/2+z/2)/Gamma(n-1/2)^2 = sum(BG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. Our definition leads to BG2[2m,1] = 2*beta(2m+1) and the recurrence relation BG2[2m,n] = BG2[2m,n-1] - BG2[2m-2,n-1]/(2*n-3)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). We observe that beta(2m+1) = 0 for m = -1, -2, -3, .. .We found for the BG2[2*m,n] = sum((-1)^(k+n)*t2(n-1,k-1)* 2*beta(2*m-2*n+2*k+1),k=1..n)/((2*n-3)!!)^2 with the central factorial numbers t2(n,m) as defined above; see also the Maple program.
From the BG2 matrix and the closely related EG2 and ZG2 matrices, see A008955, we arrive at the LG2 matrix which is defined by LG2[2m-1,1] = 2*lambda(2*m) and the recurrence relation LG2[2*m-1,n] = LG2[2*m-3,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG2[2*m-1,n-1]/(2*n-1) for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. We found for the matrix coefficients LG2[2m-1,n] = sum((-1)^(k+1)* t2(n-1,k-1)*2*lambda(2*m-2*n+2*k)/((2*n-1)!!*(2*n-3)!!), k=1..n) and we see that the central factorial numbers t2(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
		

References

  • P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A008958.
Columns include A000447, A001823. Right-hand columns include A001818, A001824, A001825. Cf. A008955.
Appears in A160480 (Beta triangle), A160487 (Lambda triangle), A160479 (ZL(n) sequence), A161736, A002197 and A002198. - Johannes W. Meijer, Jun 18 2009
Cf. A162443 (BG1 matrix) and A162448 (LG1 matrix). - Johannes W. Meijer, Jul 06 2009
Cf. A001147.

Programs

  • Haskell
    a008956 n k = a008956_tabl !! n !! k
    a008956_row n = a008956_tabl !! n
    a008956_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 2
    -- Reinhard Zumkeller, Dec 24 2013
  • Maple
    f:=n->mul(x+(2*i+1)^2,i=0..n-1);
    for n from 0 to 12 do
    t1:=eval(f(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od: # N. J. A. Sloane, Feb 01 2011
    A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
    nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
    

Formula

Conjecture row sums: Sum_{k=0..n} T(n,k) = |A101927(n+1)|. - R. J. Mathar, May 29 2009
May be generated by the recurrence t2(n,k) = (2*n-1)^2*t2(n-1,k-1)+t2(n-1,k) with t2(n,0) = 1 and t2(n,n)=((2*n-1)!!)^2. - Johannes W. Meijer, Jun 18 2009

Extensions

More terms from Vladeta Jovovic, Apr 16 2000
Edited by N. J. A. Sloane, Feb 01 2011

A001824 Central factorial numbers: 1st subdiagonal of A008956.

Original entry on oeis.org

1, 10, 259, 12916, 1057221, 128816766, 21878089479, 4940831601000, 1432009163039625, 518142759828635250, 228929627246078500875, 121292816354463333793500, 75908014254880833434338125, 55399444912646408707007883750, 46636497509226736668824289999375
Offset: 0

Views

Author

Keywords

Examples

			(arcsin x)^3 = x^3 + 1/2*x^5 + 37/120*x^7 + 3229/15120*x^9 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 223, Problem 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Right-hand column 2 in triangle A008956.

Programs

  • Mathematica
    a[n_] = (2n+1)!!^2 (Pi^2 - 2 PolyGamma[1, n+3/2])/8; a /@ Range[0, 12] // Simplify (* Jean-François Alcover, Apr 22 2011, after Joe Keane *)
    With[{nn=30},Take[(CoefficientList[Series[ArcSin[x]^3,{x,0,nn}], x] Range[0,nn-1]!)/6,{4,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)

Formula

E.g.f.: (arcsin x)^3; that is, a_k is the coefficient of x^(2*k+3) in (arcsin x)^3 multiplied by (2*k+3)! and divided by 6. - Joe Keane (jgk(AT)jgk.org)
a(n) = ((2*n+1)!!)^2 * Sum_{k=0..n} (2*k+1)^(-2).
a(n) ~ Pi^2*n^2*2^(2*n)*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
(-1)^(n-1)*a(n-1) is the coefficient of x^2 in Product_{k=1..2*n} (x + 2*k - 2*n - 1). - Benoit Cloitre and Michael Somos, Nov 22 2002
a(n) = det(V(i+2,j+1), 1 <= i,j <= n), where V(n,k) are central factorial numbers of the second kind with odd indices (A008958). - Mircea Merca, Apr 06 2013
Recurrence: a(n) = 2*(4*n^2+1)*a(n-1) - (2*n-1)^4*a(n-2). - Vladimir Reshetnikov, Oct 13 2016
Limit_{n->infinity} a(n)/((2n+1)!!)^2 = Pi^2/8. - Daniel Suteu, Oct 31 2017

Extensions

More terms from Joe Keane (jgk(AT)jgk.org)

A001825 Central factorial numbers: 2nd subdiagonal of A008956.

Original entry on oeis.org

1, 35, 1974, 172810, 21967231, 3841278805, 886165820604, 261042753755556, 95668443268795341, 42707926241367380631, 22821422608929422854674, 14384681946935352617964750, 10562341153570752891930640875
Offset: 0

Views

Author

Keywords

Examples

			(arcsin x)^5 = x^5 + 5/6*x^7 + 47/72*x^9 + 1571/3024*x^11 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Right-hand column 3 in triangle A008956.

Programs

  • Mathematica
    Table[(2*n+5)!/5! * SeriesCoefficient[ArcSin[x]^5,{x,0,2*n+5}], {n,0,20}] (* Vaclav Kotesovec, Feb 23 2015 *)

Formula

E.g.f.: (arcsin x)^5; that is, a_k is the coefficient of x^(2*k+5) in (arcsin x)^5 multiplied by (2*k+5)! and divided by 5!. - Joe Keane (jgk(AT)jgk.org)
(-1)^(n-2)*a(n-2) is the coefficient of x^4 in prod(k=1, 2*n, x+2*k-2*n-1). - Benoit Cloitre and Michael Somos, Nov 22 2002
a(n) = det(V(i+3,j+2), 1 <= i,j <= n), where V(n,k) are central factorial numbers of the second kind with odd indices (A008958). - Mircea Merca, Apr 06 2013
a(n) = (12*n^2 + 12*n + 11)*a(n-1) - (4*n^2 + 3)*(12*n^2 + 1)*a(n-2) + (2*n - 1)^6*a(n-3). - Vaclav Kotesovec, Feb 23 2015
a(n) ~ Pi^4 * n^(2*n+4) * 2^(2*n-2) / (3*exp(2*n)). - Vaclav Kotesovec, Feb 23 2015

Extensions

More terms from Joe Keane (jgk(AT)jgk.org)

A348082 a(n) = [x^n] Product_{k=1..2*n} 1/(1 - (2*k-1)^2 * x).

Original entry on oeis.org

1, 10, 5082, 8187608, 27350858986, 155829826875450, 1352947132455198360, 16634466165612256277904, 275064994463136775255491210, 5887721317348514340055453080350, 158391364687146632772523433272637642, 5231238431447353406197858182627897590880
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - (2*k-1)^2*x), {k, 1, 2*n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 16 2021 *)
  • PARI
    a(n) = polcoef(1/prod(k=1, 2*n, 1-(2*k-1)^2*x+x*O(x^n)), n);

Formula

a(n) ~ c * d^n * n!^2 / n^(3/2), where d = 4 * (2+r)^6 / (r^2 * (4+r)^2) = 314.10823271731893046905221731661671603309238326838259911942334135410817..., where r = 0.329482909104375658581668801636329590897344041849... is the root of the equation 4+r = r*exp(6/(2+r)) and c = 1/(2*Pi^(3/2)*sqrt(8/(r*(4 + r)) - 1)) = 0.041829340046147280338756273441751288807538817430199591424694081075... - Vaclav Kotesovec, Oct 16 2021, updated May 17 2025
a(n) = A381512(n,4*n-1) = (1/(2^(4*n-2)*(4*n-1)!)) * Sum_{k=0..2*n-1} (-1)^k * (4*n-1-2*k)^(6*n-1) * binomial(4*n-1,k) for n > 0. - Seiichi Manyama, May 16 2025

A185375 a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.

Original entry on oeis.org

0, 0, 1, 91, 966, 5082, 18447, 53053, 129948, 282948, 562989, 1043119, 1824130, 3040830, 4868955, 7532721, 11313016, 16556232, 23683737, 33201987, 45713278, 61927138, 82672359, 108909669, 141745044, 182443660
Offset: 0

Views

Author

Wesley Transue, Jan 21 2012

Keywords

Comments

Third column (k=2) of A008958.

Crossrefs

Third column (k=2) of A008958 Triangle of central factorial numbers.
Cf. A103220.

Programs

  • Magma
    [n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90 : n in [0..50]]; // Wesley Ivan Hurt, Apr 23 2021
  • Mathematica
    Table[n*(n - 1)*(2*n + 1)*(2*n - 1)*(2*n - 3)*(10*n - 17)/90, {n, 0, 50}] (* G. C. Greubel, Jun 28 2017 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,1,91,966,5082,18447},30] (* Harvey P. Dale, Oct 10 2021 *)
  • PARI
    a(n) = binomial(2*n+1,5)*(10*n-17)/3  \\ Michel Marcus, Jun 18 2013
    

Formula

a(n) = n*(n-1)*(2*n+1)*(2*n-1)*(2*n-3)*(10*n-17)/90.
a(n) = binomial(2*n+1,5)*(10*n-17)/3.
From G. C. Greubel, Jun 28 2017: (Start)
G.f.: x^2*(1 + 84*x + 350*x^2 + 196*x^3 + 9*x^4)/(1 - x)^7.
E.g.f.: (1/90)*x^2*(45 + 1320 x + 2280 x^2 + 864 x^3 + 80 x^4)*exp(x). (End)
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Apr 23 2021
a(n) = Sum_{1 <= i <= j <= n-1} (2*i - 1)^2 * (2*j - 1)^2. - Peter Bala, Sep 03 2023
Showing 1-10 of 10 results.