Original entry on oeis.org
0, 1, 1, 10, 10, 19, 19, 37, 28, 37, 37, 37, 37, 46, 73, 55, 55, 64, 73, 73, 64, 82, 73, 109, 100, 118, 91, 109, 109, 118, 127, 127, 109, 136, 145, 127, 145, 136, 145, 163, 145, 154, 172, 190, 127, 181, 199, 208, 217, 190, 181, 235, 235, 253, 226, 217, 226, 235, 262
Offset: 0
-
A002452 := proc(n) (9^n-1)/8 ; end: A007953 := proc(n) local i ; add(i,i=convert(n,base,10)) ; end: A141324 := proc(n) A007953(A002452(n)) ; end: for n from 0 to 80 do printf("%d,",A141324(n)) ; od: # R. J. Mathar, Aug 09 2008
-
Total[IntegerDigits[#]]&/@LinearRecurrence[{10,-9},{0,1},60] (* Harvey P. Dale, Sep 23 2018 *)
A000225
a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)
Original entry on oeis.org
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0
For n=3, a(3)=S(4,2)=7, a Stirling number of the second kind, since there are 7 ways to partition {a,b,c,d} into 2 nonempty subsets, namely,
{a}U{b,c,d}, {b}U{a,c,d}, {c}U{a,b,d}, {d}U{a,b,c}, {a,b}U{c,d}, {a,c}U{b,d}, and {a,d}U{b,c}. - _Dennis P. Walsh_, Mar 29 2011
From _Justin M. Troyka_, Aug 13 2011: (Start)
Since a(3) = 7, there are 7 signed permutations of 4 that are equal to the bar of their reverse-complements and avoid {(-2,-1), (-1,+2), (+2,+1)}. These are:
(+1,+2,-3,-4),
(+1,+3,-2,-4),
(+1,-3,+2,-4),
(+2,+4,-1,-3),
(+3,+4,-1,-2),
(-3,+1,-4,+2),
(-3,-4,+1,+2). (End)
G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 63*x^6 + 127*x^7 + ...
For the Towers of Hanoi problem with 2 disks, the moves are as follows, so a(2) = 3.
12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12 - _Allan Bickle_, Aug 07 2024
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
- Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
- Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 20-21, Loesung, S. 36-37. See also the link below.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 75-83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, "Tower of Hanoi", Penguin Books, 1987, pp. 112-113.
- Franklin T. Adams-Watters, Table of n, a(n) for n = 0..1000
- Omran Ahmadi and Robert Granger, An efficient deterministic test for Kloosterman sum zeros, Math. Comp. 83 (2014), 347-363, arXiv:1104.3882 [math.NT], 2011-2012. See 1st and 2nd column of Table 1 p. 9.
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Anonymous, The Tower of Hanoi
- M. Baake, F. Gahler and U. Grimm, Examples of substitution systems and their factors, arXiv:1211.5466 [math.DS], 2012-2013.
- Michael Baake, Franz Gähler, and Uwe Grimm, Examples of Substitution Systems and Their Factors, Journal of Integer Sequences, Vol. 16 (2013), #13.2.14.
- J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- J. Bernheiden, Mersennesche Zahlen, (Text in German) [Wayback Machine cached version].
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
- R. P. Brent and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100, CWI Report 9212, 1992 [Wayback Machine cached version].
- R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100: Update 2
- R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations Of Cunningham Numbers With Bases 13 To 99. Millennium Edition [BROKEN LINK]
- R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations of Cunningham numbers with bases 13 to 99: Millennium edition
- R. P. Brent and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100
- John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers] [Subscription required].
- Jill Britton, The Tower of Hanoi [Video file, Wayback Machine cached version].
- Jill Britton, The Frog Puzzle [Wayback Machine cached version].
- C. K. Caldwell, The Prime Glossary, Mersenne number
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. Catarino, H. Campos, and P. Vasco, On the Mersenne sequence, Annales Mathematicae et Informaticae, 46 (2016) pp. 37-53.
- Robert George Cowell, A unifying framework for the modelling and analysis of STR DNA samples arising in forensic casework, arXiv:1802.09863 [stat.AP], 2018.
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_James Mitchell_ and _Wilf A. Wilson_, Jul 21 2017]
- W. Edgington, Mersenne Page [BROKEN LINK]
- David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
- T. Eveilleau, Animated solution to the Tower of Hanoi problem
- G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
- G. Everest, S. Stevens, D. Tamsett and T. Ward, Primitive divisors of quadratic polynomial sequences, arXiv:math/0412079 [math.NT], 2004-2006.
- G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
- Carrie E. Finch-Smith and R. Scottfield Groth, Arbitrarily Long Sequences of Sierpiński Numbers that are the Sum of a Sierpiński Number and a Mersenne Number, Journal of Integer Sequences, Vol. 28 (2025), Article 25.2.4. See p. 22.
- Robert Frontczak and Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Mathematical Publications, Vol. 12, no. 1, (2020), 34-45.
- Robert Granger, On the Enumeration of Irreducible Polynomials over GF(q) with Prescribed Coefficients, arXiv:1610.06878 [math.AG], 2016. See 1st and 2nd column of Table 1 p. 13.
- Madeleine Goertz and Aaron Williams, The Quaternary Gray Code and How It Can Be Used to Solve Ziggurat and Other Ziggu Puzzles, arXiv:2411.19291 [math.CO], 2024. See p. 17.
- Taras Goy, On new identities for Mersenne numbers, Applied Mathematics E-Notes, 18 (2018), 100-105.
- R. K. Guy, Letter to N. J. A. Sloane
- A. Hardt and J. M. Troyka, Restricted symmetric signed permutations, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179--217.
- A. Hardt and J. M. Troyka, Slides (associated with the Hardt and Troyka reference above).
- Johann Peter Hebel, Erstes Rechnungsexempel, 1803; Solution: Auflösung des ersten Rechnungsexempels und ein zweites, 1804.
- A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 11. Book's website
- A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 138, 345, 371, and 880
- Jiří Klaška, Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem, J. Int. Seq., Vol. 26 (2023), Article 23.3.8.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- J. Loy, The Tower of Hanoi
- Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
- Mathforum, Tower of Hanoi
- Mathforum, Problem of the Week, The Tower of Hanoi Puzzle
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012
- N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- N. Neumarker, Realizability of Integer Sequences as Differences of Fixed Point Count Sequences, JIS 12 (2009) 09.4.5, Example 11.
- NRICH 1246, Frogs
- Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- D. C. Santos, E. A. Costa, and P. M. M. C. Catarino, On Gersenne Sequence: A Study of One Family in the Horadam-Type Sequence, Axioms 14, 203, (2025). See pp. 1, 4.
- Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, avril-juin 2010, pages 30-38, included here with permission from the editors of Quadrature.
- R. R. Snapp, The Tower of Hanoi.
- Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Thesaurus.maths.org, Mersenne Number
- Thinks.com, Tower of Hanoi, A classic puzzle game
- A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, Journal of Integer Sequences, 14 (2011), #11.7.5.
- Eric Weisstein's World of Mathematics, Coin Tossing, Digit, Repunit, Rule 222, Run, and Tower of Hanoi
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Eric Weisstein's World of Mathematics, Complete Graph
- Eric Weisstein's World of Mathematics, Dominating Set
- Eric Weisstein's World of Mathematics, Helm Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Mersenne Number
- Eric Weisstein's World of Mathematics, Minimum Dominating Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Wikipedia, H tree, Lucas sequence, and Tower of Hanoi
- K. K. Wong, Tower Of Hanoi:Online Game
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
- Index entries for "core" sequences
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Cf.
A001348 (Mersenne numbers with n prime).
-
a000225 = (subtract 1) . (2 ^)
a000225_list = iterate ((+ 1) . (* 2)) 0
-- Reinhard Zumkeller, Mar 20 2012
-
A000225 := n->2^n-1; [ seq(2^n-1,n=0..50) ];
A000225:=1/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, sequence starting at a(1)
-
a[n_] := 2^n - 1; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 30 2006 *)
Array[2^# - 1 &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
NestList[2 # + 1 &, 0, 32] (* Robert G. Wilson v, Feb 28 2011 *)
2^Range[0, 20] - 1 (* Eric W. Weisstein, Jul 17 2017 *)
LinearRecurrence[{3, -2}, {1, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 3 x + 2 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
-
A000225(n) = 2^n-1 \\ Michael B. Porter, Oct 27 2009
-
concat(0, Vec(x/((1-2*x)*(1-x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
-
def A000225(n): return (1<Chai Wah Wu, Jul 06 2022
-
def isMersenne(n): return n == sum([(1 - b) << s for (s, b) in enumerate((n+1).bits())]) # Peter Luschny, Sep 01 2019
A003463
a(n) = (5^n - 1)/4.
Original entry on oeis.org
0, 1, 6, 31, 156, 781, 3906, 19531, 97656, 488281, 2441406, 12207031, 61035156, 305175781, 1525878906, 7629394531, 38146972656, 190734863281, 953674316406, 4768371582031, 23841857910156, 119209289550781, 596046447753906, 2980232238769531
Offset: 0
Base 5...........decimal
0......................0
1......................1
11.....................6
111...................31
1111.................156
11111................781
111111..............3906
1111111............19531
11111111...........97656
111111111.........488281
1111111111.......2441406
etc. ...............etc.
- _Zerinvary Lajos_, Jan 14 2007
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 282.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Joseph E. Bonin and Joseph P. S. Kung The Number of Points In A Combinatorial Geometry With No 8-Point-Line Minors, Mathematical Essays in Honor of Gian-Carlo Rota, B. Sagan and R. P. Stanley, eds., Birkhäuser, 1998, 271-284.
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 374
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Repunit
- Index entries for linear recurrences with constant coefficients, signature (6,-5).
-
[(5^n-1)/4 : n in [0..30]]; // Wesley Ivan Hurt, Sep 25 2014
-
a:=n->sum(5^(n-j),j=1..n): seq(a(n), n=0..23); # Zerinvary Lajos, Jan 04 2007
A003463:=1/(5*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=6*a[n-1]-5*a[n-2]od: seq(a[n], n=0..23); # Zerinvary Lajos, Feb 21 2008
-
lst={}; Do[p=(5^n-1)/4; AppendTo[lst, p], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)
Table[((5^n-1)/4),{n,0,25}] (* Vincenzo Librandi, Aug 20 2012 *)
NestList[5 # + 1 &, 0, 23] (* Bruno Berselli, Feb 06 2013 *)
LinearRecurrence[{6,-5},{0,1},30] (* Harvey P. Dale, Sep 20 2023 *)
-
A003463(n):=floor((5^n-1)/4)$ makelist(A003463(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=5^n\4; \\ Charles R Greathouse IV, Jul 15 2011
-
[lucas_number1(n,6,5) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
-
[gaussian_binomial(n,1,5) for n in range(0,24)] # Zerinvary Lajos, May 28 2009
A015518
a(n) = 2*a(n-1) + 3*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 2, 7, 20, 61, 182, 547, 1640, 4921, 14762, 44287, 132860, 398581, 1195742, 3587227, 10761680, 32285041, 96855122, 290565367, 871696100, 2615088301, 7845264902, 23535794707, 70607384120, 211822152361, 635466457082
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, and Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- Katerina Böhmová, Cristina Dalfó, and Clemens Huemer, On cyclic Kautz digraphs, Research Report, 2015.
- Garry Bowlin and Matthew G. Brin, Coloring Planar Graphs via Colored Paths in the Associahedra, arXiv preprint arXiv:1301.3984 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 12 2013
- AJ Bu and Doron Zeilberger, Using Symbolic Computation to Explore Generalized Dyck Paths and Their Areas, arXiv:2305.09030 [math.CO], 2023.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Dale Gerdemann, Fractal generated from (2,3) recursion, YouTube Video, Dec 05 2014.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in flattened derangements, Disc. Math. Lett. (2025) Vol. 15, 67-74. See p. 74.
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 2.
- Felix Pozon Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
- Index entries for sequences related to Chebyshev polynomials.
The following sequences (and others) belong to the same family:
A000129,
A001333,
A002532,
A002533,
A002605,
A015518,
A015519,
A026150,
A046717,
A063727,
A083098,
A083099,
A083100,
A084057.
-
[Round(3^n/4): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
Table[(3^n-(-1)^n)/4,{n,0,30}] (* Alexander Adamchuk, Nov 19 2006 *)
-
a(n):= round(3^n/4)$ /* Dimitri Papadopoulos, Nov 28 2023 */
-
a(n)=round(3^n/4)
-
for n in range(0, 20): print(int((3**n-(-1)**n)/4), end=', ') # Stefano Spezia, Nov 30 2018
-
[round(3^n/4) for n in range(0,27)]
A136630
Triangular array: T(n,k) counts the partitions of the set [n] into k odd sized blocks.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 0, 10, 0, 1, 0, 0, 16, 0, 20, 0, 1, 0, 1, 0, 91, 0, 35, 0, 1, 0, 0, 64, 0, 336, 0, 56, 0, 1, 0, 1, 0, 820, 0, 966, 0, 84, 0, 1, 0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1, 0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1, 0, 0, 1024, 0, 87296, 0
Offset: 0
Triangle begins:
1;
0, 1;
0, 0, 1;
0, 1, 0, 1;
0, 0, 4, 0, 1;
0, 1, 0, 10, 0, 1;
0, 0, 16, 0, 20, 0, 1;
0, 1, 0, 91, 0, 35, 0, 1;
0, 0, 64, 0, 336, 0, 56, 0, 1;
0, 1, 0, 820, 0, 966, 0, 84, 0, 1;
0, 0, 256, 0, 5440, 0, 2352, 0, 120, 0, 1;
0, 1, 0, 7381, 0, 24970, 0, 5082, 0, 165, 0, 1;
T(5,3) = 10. The ten partitions of the set [5] into 3 odd-sized blocks are
(1)(2)(345), (1)(3)(245), (1)(4)(235), (1)(5)(234), (2)(3)(145),
(2)(4)(135), (2)(5)(134), (3)(4)(125), (3)(5)(124), (4)(5)(123).
Connection constants: Row 5 = [0,1,0,10,0,1]. Hence, with the polynomial sequence x_(n) as defined in the Comments section we have x^5 = x_(1) + 10*x_(3) + x_(5) = x + 10*x*(x+1)*(x-1) + x*(x+3)*(x+1)*(x-1)*(x-3).
- L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 225-226.
- Ch. A. Charalambides, Central factorial numbers and related expansions, Fib. Quarterly, Vol. 19, No 5, Dec 1981, pp. 451-456.
- Feng Qi and Peter Taylor, Series expansions for powers of sinc function and closed-form expressions for specific partial Bell polynomials, Appl. Anal. Disc. Math. (2024) Vol. 18, No. 1, 1-24. See p. 13.
-
A136630 := proc (n, k) option remember; if k < 0 or n < k then 0 elif k = n then 1 else procname(n-2, k-2) + k^2*procname(n-2, k) end if end proc: seq(seq(A136630(n, k), k = 1 .. n), n = 1 .. 12); # Peter Bala, Jul 27 2014
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (n+1) mod 2, 9); # Peter Luschny, Jan 27 2016
-
t[n_, k_] := Coefficient[ x^k/Product[ 1 - (2*j + k - 2*Quotient[k, 2])^2*x^2, {j, 0, k/2}] + x*O[x]^n, x, n]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 22 2013, after Pari *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 13;
M = BellMatrix[Mod[#+1, 2]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
{T(n,k)=polcoeff(x^k/prod(j=0,k\2,1-(2*j+k-2*(k\2))^2*x^2 +x*O(x^n)),n)}
A006095
Gaussian binomial coefficient [n, 2] for q = 2.
Original entry on oeis.org
0, 0, 1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- T. D. Noe, Table of n, a(n) for n = 0..200
- L. Mariot and E. Formenti, The number of coprime/non-coprime pairs of polynomials over F_2 with degree n and nonzero constant term.
- Ronald Orozco López, Generating Functions of Generalized Simplicial Polytopic Numbers and (s,t)-Derivatives of Partial Theta Function, arXiv:2408.08943 [math.CO], 2024. See p. 11.
- Ronald Orozco López, Simplicial d-Polytopic Numbers Defined on Generalized Fibonacci Polynomials, arXiv:2501.11490 [math.CO], 2025. See p. 6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- A. I. Solomon, C.-L. Ho and G. H. E. Duchamp, Degrees of entanglement for multipartite systems, arXiv preprint arXiv:1205.4958 [quant-ph], 2012. - _N. J. A. Sloane_, Oct 23 2012
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Cf.
A000392,
A002275,
A002452,
A003462,
A003463,
A003464,
A016123,
A016125,
A016208,
A016256,
A023000,
A023001,
A075113,
A130324,
A203235.
-
a:= n-> add((4^(n-1-j) - 2^(n-1-j))/2, j=0..n-1):
seq(a(n), n=0..24); # Zerinvary Lajos, Jan 04 2007
A006095 := -z^2/(z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation. [adapted to offset 0 by Peter Luschny, Jul 20 2021]
a := n -> (2^n - 2)*(2^n - 1)/6:
seq(a(n), n = 0..24); # Peter Luschny, Jul 20 2021
-
Join[{a=0,b=0},Table[c=6*b-8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
CoefficientList[Series[x^2/((1-x)(1-2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{7,-14,8},{0,0,1},30] (* Harvey P. Dale, Jul 22 2011 *)
(* Next, using elementary symmetric functions *)
f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[2, t[n]]
Table[a[n], {n, 2, 32}] (* A203235 *)
Table[a[n]/2, {n, 2, 32}] (* A006095 *)
(* Clark Kimberling, Dec 31 2011 *)
Table[QBinomial[n, 2, 2], {n, 0, 24}] (* Arkadiusz Wesolowski, Nov 12 2015 *)
-
a(n) = (2^n - 1)*(2^(n-1) - 1)/3 \\ Charles R Greathouse IV, Jul 25 2011
-
concat([0, 0], Vec(x^2/((1-x)*(1-2*x)*(1-4*x)) + O(x^50))) \\ Altug Alkan, Nov 12 2015
-
[gaussian_binomial(n,2,2) for n in range(0,25)] # Zerinvary Lajos, May 24 2009
A000392
Stirling numbers of second kind S(n,3).
Original entry on oeis.org
0, 0, 0, 1, 6, 25, 90, 301, 966, 3025, 9330, 28501, 86526, 261625, 788970, 2375101, 7141686, 21457825, 64439010, 193448101, 580606446, 1742343625, 5228079450, 15686335501, 47063200806, 141197991025, 423610750290, 1270865805301
Offset: 0
a(4) = 6. Let denote Z[i] the i-th labeled element = "ball". Then one has for n=4 six different ways to fill sets = "boxes" with the labeled elements:
Set(Set(Z[3], Z[4]), Set(Z[1]), Set(Z[2])), Set(Set(Z[3], Z[1]), Set(Z[4]), Set(Z[2])), Set(Set(Z[4], Z[1]), Set(Z[3]), Set(Z[2])), Set(Set(Z[4]), Set(Z[1]), Set(Z[3], Z[2])), Set(Set(Z[3]), Set(Z[1], Z[2]), Set(Z[4])), Set(Set(Z[3]), Set(Z[1]), Set(Z[4], Z[2])).
G.f. = x^3 + 6*x^4 + 25*x^5 + 90*x^6 + 301*x^7 + 966*x^8 + 3025*x^9 + ...
For example, for n=3, a(4)=6 since the disjoint unions are: {1}U{2}, {1}U{3}, {1}U{2,3}, {2}U{3}, {2}U{1,3}, and {1,2}U{3}. - _Enrique Navarrete_, Aug 24 2021
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- John Elias, Illustration: Stirling-Sierpinski triangles, Nicomachus-Sierpinski towers
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 346
- Fred Kline and Peter Taylor, Partial sums of Nicomachus' Triangle rows produce Stirling numbers of the 2nd kind, Mathematics Stack Exchange. - _Fred Daniel Kline_, Sep 22 2014
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 1, p. 531.
- Kai Wang, Girard-Waring Type Formula For A Generalized Fibonacci Sequence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 229-235.
- Eric Weisstein's World of Mathematics, Minimal Cover.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
A003951
Expansion of g.f.: (1+x)/(1-8*x).
Original entry on oeis.org
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395904, 20266198323167232, 162129586585337856, 1297036692682702848
Offset: 0
-
k:=9;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
-
[1] cat [9*8^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
-
k:=9; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
-
Join[{1}, 9*8^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
CoefficientList[Series[(1+x)/(1-8*x), {x, 0, 25}], x] (* Vincenzo Librandi, Dec 10 2012 *)
-
a(n)=if(n,9*8^n/8,1) \\ Charles R Greathouse IV, Mar 22 2016
-
k=9; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
A131865
Partial sums of powers of 16.
Original entry on oeis.org
1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0
a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001.
a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Kival Ngaokrajang, Illustration of initial terms
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
- Simon Plouffe, Identities and approximations inspired from Ramanujan notebooks, III, 2009.
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Cf.
A000225,
A003462,
A002450,
A003463,
A003464,
A023000,
A023001,
A002452,
A002275,
A016123,
A016125,
A091030,
A135519,
A135518,
A091045,
A218721,
A218722,
A064108,
A218724-
A218734,
A132469,
A218736-
A218753,
A133853,
A094028,
A218723. -
M. F. Hasler, Nov 05 2012
-
[(16^(n+1)-1)/15: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
A131865:=n->(16^(n+1)-1)/15: seq(A131865(n), n=0..30); # Wesley Ivan Hurt, Apr 29 2017
-
Table[(2^(4 n) - 1)/15, {n, 16}] (* Robert G. Wilson v, Aug 22 2007 *)
Accumulate[16^Range[0,20]] (* or *) LinearRecurrence[{17,-16},{1,17},20] (* Harvey P. Dale, Jul 19 2019 *)
-
a[0]:0$
a[n]:=16*a[n-1]+1$
A131865(n):=a[n]$
makelist(A131865(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
A131865(n)=16^n\15 \\ M. F. Hasler, Nov 05 2012
-
def A131865(n): return (1<<(n+1<<2))//15 # Chai Wah Wu, Nov 10 2022
-
[gaussian_binomial(n,1,16) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
A091030
Partial sums of powers of 13 (A001022).
Original entry on oeis.org
1, 14, 183, 2380, 30941, 402234, 5229043, 67977560, 883708281, 11488207654, 149346699503, 1941507093540, 25239592216021, 328114698808274, 4265491084507563, 55451384098598320, 720867993281778161
Offset: 1
For n=6, a(6) = 1*6 + 12*15 + 144*20 + 1728*15 + 20736*6 + 248832*1 = 402234. - _Bruno Berselli_, Nov 12 2015
-
a:=n->sum(13^(n-j),j=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 04 2007
-
Table[13^n, {n, 0, 16}] // Accumulate (* Jean-François Alcover, Jul 05 2013 *)
LinearRecurrence[{14,-13},{1,14},20] (* Harvey P. Dale, Jan 19 2024 *)
-
A091030(n):=(13^n-1)/12$ makelist(A091030(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=([0,1; -13,14]^(n-1)*[1;14])[1,1] \\ Charles R Greathouse IV, Sep 24 2015
-
[gaussian_binomial(n,1,13) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
-
[(13^n-1)/12 for n in (1..30)] # Bruno Berselli, Nov 12 2015
Showing 1-10 of 91 results.
Comments