cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 74 results. Next

A003462 a(n) = (3^n - 1)/2.

Original entry on oeis.org

0, 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484, 7174453, 21523360, 64570081, 193710244, 581130733, 1743392200, 5230176601, 15690529804, 47071589413, 141214768240, 423644304721, 1270932914164
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A000244. Values of base 3 strings of 1's.
a(n) = (3^n-1)/2 is also the number of different nonparallel lines determined by pair of vertices in the n dimensional hypercube. Example: when n = 2 the square has 4 vertices and then the relevant lines are: x = 0, y = 0, x = 1, y = 1, y = x, y = 1-x and when we identify parallel lines only 4 remain: x = 0, y = 0, y = x, y = 1 - x so a(2) = 4. - Noam Katz (noamkj(AT)hotmail.com), Feb 11 2001
Also number of 3-block bicoverings of an n-set (if offset is 1, cf. A059443). - Vladeta Jovovic, Feb 14 2001
3^a(n) is the highest power of 3 dividing (3^n)!. - Benoit Cloitre, Feb 04 2002
Apart from the a(0) and a(1) terms, maximum number of coins among which a lighter or heavier counterfeit coin can be identified (but not necessarily labeled as heavier or lighter) by n weighings. - Tom Verhoeff, Jun 22 2002, updated Mar 23 2017
n such that A001764(n) is not divisible by 3. - Benoit Cloitre, Jan 14 2003
Consider the mapping f(a/b) = (a + 2b)/(2a + b). Taking a = 1, b = 2 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. Sequence contains the numerators = (3^n-1)/2. The same mapping for N, i.e., f(a/b) = (a + Nb)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Binomial transform of A000079 (with leading zero). - Paul Barry, Apr 11 2003
With leading zero, inverse binomial transform of A006095. - Paul Barry, Aug 19 2003
Number of walks of length 2*n + 2 in the path graph P_5 from one end to the other one. Example: a(2) = 4 because in the path ABCDE we have ABABCDE, ABCBCDE, ABCDCDE and ABCDEDE. - Emeric Deutsch, Apr 02 2004
The number of triangles of all sizes (not counting holes) in Sierpiński's triangle after n inscriptions. - Lee Reeves (leereeves(AT)fastmail.fm), May 10 2004
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n + 1, s(0) = 1, s(2n+1) = 4. - Herbert Kociemba, Jun 10 2004
Number of non-degenerate right-angled incongruent integer-edged Heron triangles whose circumdiameter is the product of n distinct primes of shape 4k + 1. - Alex Fink and R. K. Guy, Aug 18 2005
Also numerator of the sum of the reciprocals of the first n powers of 3, with A000244 being the sequence of denominators. With the exception of n < 2, the base 10 digital root of a(n) is always 4. In base 3 the digital root of a(n) is the same as the digital root of n. - Alonso del Arte, Jan 24 2006
The sequence 3*a(n), n >= 1, gives the number of edges of the Hanoi graph H_3^{n} with 3 pegs and n >= 1 discs. - Daniele Parisse, Jul 28 2006
Numbers n such that a(n) is prime are listed in A028491 = {3, 7, 13, 71, 103, 541, 1091, ...}. 2^(m+1) divides a(2^m*k) for m > 0. 5 divides a(4k). 5^2 divides a(20k). 7 divides a(6k). 7^2 divides a(42k). 11^2 divides a(5k). 13 divides a(3k). 17 divides a(16k). 19 divides a(18k). 1093 divides a(7k). 41 divides a(8k). p divides a((p-1)/5) for prime p = {41, 431, 491, 661, 761, 1021, 1051, 1091, 1171, ...}. p divides a((p-1)/4) for prime p = {13, 109, 181, 193, 229, 277, 313, 421, 433, 541, ...}. p divides a((p-1)/3) for prime p = {61, 67, 73, 103, 151, 193, 271, 307, 367, ...} = A014753, 3 and -3 are both cubes (one implies other) mod these primes p = 1 mod 6. p divides a((p-1)/2) for prime p = {11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, ...} = A097933(n). p divides a(p-1) for prime p > 7. p^2 divides a(p*(p-1)k) for all prime p except p = 3. p^3 divides a(p*(p-1)*(p-2)k) for prime p = 11. - Alexander Adamchuk, Jan 22 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of [unordered] pairs of elements {x,y} of P(A) for which x and y are disjoint [and both nonempty]. Wieder calls these "disjoint usual 2-combinations". - Ross La Haye, Jan 10 2008 [This is because each of the elements of {1, 2, ..., n} can be in the first subset, in the second or in neither. Because there are three options for each, the total number of options is 3^n. However, since the sets being empty is not an option we subtract 1 and since the subsets are unordered we then divide by 2! (The number of ways two objects can be arranged.) Thus we obtain (3^n-1)/2 = a(n). - Chayim Lowen, Mar 03 2015]
Also, still with P(A) being the power set of a n-element set A, a(n) is the number of 2-element subsets {x,y} of P(A) such that the union of x and y is equal to A. Cf. A341590. - Fabio Visonà, Feb 20 2021
Starting with offset 1 = binomial transform of A003945: (1, 3, 6, 12, 24, ...) and double bt of (1, 2, 1, 2, 1, 2, ...); equals polcoeff inverse of (1, -4, 3, 0, 0, 0, ...). - Gary W. Adamson, May 28 2009
Also the constant of the polynomials C(x) = 3x + 1 that form a sequence by performing this operation repeatedly and taking the result at each step as the input at the next. - Nishant Shukla (n.shukla722(AT)gmail.com), Jul 11 2009
It appears that this is A120444(3^n-1) = A004125(3^n) - A004125(3^n-1), where A004125 is the sum of remainders of n mod k for k = 1, 2, 3, ..., n. - John W. Layman, Jul 29 2009
Subsequence of A134025; A171960(a(n)) = a(n). - Reinhard Zumkeller, Jan 20 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i, i] := 3, (i > 1), A[i, i-1] = -1, and A[i, j] = 0 otherwise. Then, for n >= 1, a(n) = det(A). - Milan Janjic, Jan 27 2010
This is the sequence A(0, 1; 2, 3; 2) = A(0, 1; 4, -3; 0) of the family of sequences [a, b:c, d:k] considered by Gary Detlefs, and treated as A(a, b; c, d; k) in the Wolfdieter Lang link given below. - Wolfdieter Lang, Oct 18 2010
It appears that if s(n) is a first order rational sequence of the form s(0) = 0, s(n) = (2*s(n-1)+1)/(s(n-1)+2), n > 0, then s(n)= a(n)/(a(n)+1). - Gary Detlefs, Nov 16 2010
This sequence also describes the total number of moves to solve the [RED ; BLUE ; BLUE] or [RED ; RED ; BLUE] pre-colored Magnetic Towers of Hanoi puzzle (cf. A183111 - A183125).
From Adi Dani, Jun 08 2011: (Start)
a(n) is number of compositions of odd numbers into n parts less than 3. For example, a(3) = 13 and there are 13 compositions odd numbers into 3 parts < 3:
1: (0, 0, 1), (0, 1, 0), (1, 0, 0);
3: (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1);
5: (1, 2, 2), (2, 1, 2), (2, 2, 1).
(End)
Pisano period lengths: 1, 2, 1, 2, 4, 2, 6, 4, 1, 4, 5, 2, 3, 6, 4, 8, 16, 2, 18, 4, ... . - R. J. Mathar, Aug 10 2012
a(n) is the total number of holes (triangles removed) after the n-th step of a Sierpiński triangle production. - Ivan N. Ianakiev, Oct 29 2013
a(n) solves Sum_{j = a(n) + 1 .. a(n+1)} j = k^2 for some integer k, given a(0) = 0 and requiring smallest a(n+1) > a(n). Corresponding k = 3^n. - Richard R. Forberg, Mar 11 2015
a(n+1) equals the number of words of length n over {0, 1, 2, 3} avoiding 01, 02 and 03. - Milan Janjic, Dec 17 2015
For n >= 1, a(n) is also the total number of words of length n, over an alphabet of three letters, such that one of the letters appears an odd number of times (See A006516 for 4 letter words, and the Balakrishnan reference there). - Wolfdieter Lang, Jul 16 2017
Also, the number of maximal cliques, maximum cliques, and cliques of size 4 in the n-Apollonian network. - Andrew Howroyd, Sep 02 2017
For n > 1, the number of triangles (cliques of size 3) in the (n-1)-Apollonian network. - Andrew Howroyd, Sep 02 2017
a(n) is the largest number that can be represented with n trits in balanced ternary. Correspondingly, -a(n) is the smallest number that can be represented with n trits in balanced ternary. - Thomas König, Apr 26 2020
These form Sierpinski nesting-stars, which alternate pattern on 3^n+1/2 star numbers A003154, based on the square configurations of 9^n. The partial sums of 3^n are delineated according to the geometry of a hexagram, see illustrations in links. (3*a(n-1) + 1) create Sierpinski-anti-triangles, representing the number of holes in a (n+1) Sierpinski triangle (see illustrations). - John Elias, Oct 18 2021
For n > 1, a(n) is the number of iterations necessary to calculate the hyperbolic functions with CORDIC. - Mathias Zechmeister, Jul 26 2022
a(n) is the least number k such that A065363(k) = n. - Amiram Eldar, Sep 03 2022
For all n >= 0, Sum_{k=a(n)+1..a(n+1)} 1/k < Sum_{j=a(n+1)+1..a(n+2)} 1/j. These are the minimal points which partition the infinite harmonic series into a monotonically increasing sequence. Each partition approximates log(3) from below as n tends to infinity. - Joseph Wheat, Apr 15 2023
a(n) is also the number of 3-cycles in the n-Dorogovtsev-Goltsev-Mendes graph (using the convention the 0-Dorogovtsev-Goltsev-Mendes graph is P_2). - Eric W. Weisstein, Dec 06 2023

Examples

			There are 4 3-block bicoverings of a 3-set: {{1, 2, 3}, {1, 2}, {3}}, {{1, 2, 3}, {1, 3}, {2}}, {{1, 2, 3}, {1}, {2, 3}} and {{1, 2}, {1, 3}, {2, 3}}.
Ternary........Decimal
0.................0
1.................1
11................4
111..............13
1111.............40 etc. - _Zerinvary Lajos_, Jan 14 2007
There are altogether a(3) = 13 three letter words over {A,B,C} with say, A, appearing an odd number of times: AAA; ABC, ACB, ABB, ACC; BAC, CAB, BAB, CAC; BCA, CBA, BBA, CCA. - _Wolfdieter Lang_, Jul 16 2017
		

References

  • J. G. Mauldon, Strong solutions for the counterfeit coin problem, IBM Research Report RC 7476 (#31437) 9/15/78, IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, N. Y. 10598.
  • Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • Paulo Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • Amir Sapir, The Tower of Hanoi with Forbidden Moves, The Computer J. 47 (1) (2004) 20, case three-in-a row, sequence a(n).
  • Robert Sedgewick, Algorithms, 1992, pp. 109.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sequences used for Shell sort: A033622, A003462, A036562, A036564, A036569, A055875.
Cf. A179526 (repeats), A113047 (characteristic function).
Cf. A000225, A000392, A004125, A014753, A028491 (indices of primes), A059443 (column k = 3), A065363, A097933, A120444, A321872 (sum reciprocals).
Cf. A064099 (minimal number of weightings to detect lighter or heavier coin among n coins).
Cf. A039755 (column k = 1).
Cf. A006516 (binomial transform, and special 4 letter words).
Cf. A341590.
Cf. A003462(n) (3-cycles), A367967(n) (5-cycles), A367968(n) (6-cycles).

Programs

Formula

G.f.: x/((1-x)*(1-3*x)).
a(n) = 4*a(n-1) - 3*a(n-2), n > 1. a(0) = 0, a(1) = 1.
a(n) = 3*a(n-1) + 1, a(0) = 0.
E.g.f.: (exp(3*x) - exp(x))/2. - Paul Barry, Apr 11 2003
a(n+1) = Sum_{k = 0..n} binomial(n+1, k+1)*2^k. - Paul Barry, Aug 20 2004
a(n) = Sum_{i = 0..n-1} 3^i, for n > 0; a(0) = 0.
a(n) = A125118(n, 2) for n > 1. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1, 3) + StirlingS2(n+1, 2). - Ross La Haye, Jan 10 2008
a(n) = Sum_{k = 0..n} A106566(n, k)*A106233(k). - Philippe Deléham, Oct 30 2008
a(n) = 2*a(n-1) + 3*a(n-2) + 2, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3), a(0) = 0, a(1) = 1, a(2) = 4. Observation by G. Detlefs. See the W. Lang comment and link. - Wolfdieter Lang, Oct 18 2010
A008344(a(n)) = 0, for n > 1. - Reinhard Zumkeller, May 09 2012
A085059(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Jan 31 2013
G.f.: Q(0)/2 where Q(k) = 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - 1/(1 - 1/(3*9^k - 27*x*81^k/(9*x*9^k - 1/Q(k+1)))))); (continued fraction ). - Sergei N. Gladkovskii, Apr 12 2013
a(n) = A001065(3^n) where A001065(m) is the sum of the proper divisors of m for positive integer m. - Chayim Lowen, Mar 03 2015
a(n) = A000244(n) - A007051(n) = A007051(n)-1. - Yuchun Ji, Oct 23 2018
Sum_{n>=1} 1/a(n) = A321872. - Amiram Eldar, Nov 18 2020

Extensions

More terms from Michael Somos
Corrected my comment of Jan 10 2008. - Ross La Haye, Oct 29 2008
Removed comment that duplicated a formula. - Joerg Arndt, Mar 11 2010

A007051 a(n) = (3^n + 1)/2.

Original entry on oeis.org

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees with n edges and height at most 4.
Number of palindromic structures using a maximum of three different symbols. - Marks R. Nester
Number of compositions of all even natural numbers into n parts <= 2 (0 is counted as a part), see example. - Adi Dani, May 14 2011
Consider the mapping f(a/b) = (a + 2*b)/(2*a + b). Taking a = 1, b = 2 to start with, and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. The sequence contains the denominators = (3^n+1)/2. The same mapping for N, i.e., f(a/b) = (a + N*b)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Second binomial transform of the expansion of cosh(x). - Paul Barry, Apr 05 2003
The sequence (1, 1, 2, 5, ...) = 3^n/6 + 1/2 + 0^n/3 has binomial transform A007581. - Paul Barry, Jul 20 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n+2, s(0) = 1, s(2n+2) = 1. - Herbert Kociemba, Jun 10 2004
Density of regular language L over {1,2,3}^* (i.e., number of strings of length n in L) described by regular expression 11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*. - Nelma Moreira, Oct 10 2004
Sums of rows of the triangle in A119258. - Reinhard Zumkeller, May 11 2006
Number of n-words from the alphabet A = {a,b,c} which contain an even number of a's. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
a(n+1) gives the number of primitive periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain). - Abdullahi Umar, Oct 02 2008
Equals row sums of triangle A147292. - Gary W. Adamson, Nov 05 2008
Equals leftmost column of A071919^3. - Gary W. Adamson, Apr 13 2009
A010888(a(n))=5 for n >= 2, that is, the digital root of the terms >= 5 equals 5. - Parthasarathy Nambi, Jun 03 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,2). - Milan Janjic, Jan 27 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n-1)*charpoly(A,3). - Milan Janjic, Feb 21 2010
It appears that if s(n) is a rational sequence of the form s(1)=2, s(n)= (2*s(n-1)+1)/(s(n-1)+2), n>1 then s(n)=a(n)/(a(n-1)-1).
Form an array with m(1,n)=1 and m(i,j) = Sum_{k=1..i-1} m(k,j) + Sum_{k=1..j-1} m(i,k), which is the sum of the terms to the left of m(i,j) plus the sum above m(i,j). The sum of the terms in antidiagonal(n-1) = a(n). - J. M. Bergot, Jul 16 2013
From Peter Bala, Oct 29 2013: (Start)
An Engel expansion of 3 to the base b := 3/2 as defined in A181565, with the associated series expansion 3 = b + b^2/2 + b^3/(2*5) + b^4/(2*5*14) + .... Cf. A034472.
More generally, for a positive integer n >= 3, the sequence [1, n - 1, n^2 - n - 1, ..., ( (n - 2)*n^k + 1 )/(n - 1), ...] is an Engel expansion of n/(n - 2) to the base n/(n - 1). Cases include A007583 (n = 4), A083065 (n = 5) and A083066 (n = 6). (End)
Diagonal elements (and one more than antidiagonal elements) of the matrix A^n where A=(2,1;1,2). - David Neil McGrath, Aug 17 2014
From M. Sinan Kul, Sep 07 2016: (Start)
a(n) is equal to the number of integer solutions to the following equation when x is equal to the product of n distinct primes: 1/x = 1/y + 1/z where 0 < x < y <= z.
If z = k*y where k is a fraction >= 1 then the solutions can be given as: y = ((k+1)/k)*x and z = (k+1)*x.
Here k can be equal to any divisor of x or to the ratio of two divisors.
For example for x = 2*3*5 = 30 (product of three distinct primes), k would have the following 14 values: 1, 6/5, 3/2, 5/3, 2, 5/2, 3, 10/3, 5, 6, 15/2, 10, 15, 30.
As an example for k = 10/3, we would have y=39, z=130 and 1/39 + 1/130 = 1/30.
Here finding the number of fractions would be equivalent to distributing n balls (distinct primes) to two bins (numerator and denominator) with no empty bins which can be found using Stirling numbers of the second kind. So another definition for a(n) is: a(n) = 2^n + Sum_{i=2..n} Stirling2(i,2)*binomial(n,i).
(End)
a(n+1) is the smallest i for which the Catalan number C(i) (see A000108) is divisible by 3^n for n > 0. This follows from the rule given by Franklin T. Adams-Watters for determining the multiplicity with which a prime divides C(n). We need to find the smallest number in base 3 to achieve a given count. Applied to prime 3, 1 is the smallest digit that counts but requires to be followed by 2 which cannot be at the end to count. Therefore the number in base 3 of the form 1{n-1 times}20 = (3^(n+1) + 1)/2 + 1 = a(n+1)+1 is the smallest number to achieve count n which implies the claim. - Peter Schorn, Mar 06 2020
Let A be a Toeplitz matrix of order n, defined by: A[i,j]=1, if ij; A[i,i]=2. Then, for n>=1, a(n) = det A. - Dmitry Efimov, Oct 28 2021
a(n) is the least number k such that A065363(k) = -(n-1), for n > 0. - Amiram Eldar, Sep 03 2022

Examples

			From _Adi Dani_, May 14 2011: (Start)
a(3)=14 because all compositions of even natural numbers into 3 parts <=2 are
for 0: (0,0,0)
for 2: (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0)
for 4: (0,2,2), (2,0.2), (2,2,0), (1,1,2), (1,2,1), (2,1,1)
for 6: (2,2,2).
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 47.
  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 1.
Binomial transform of Chebyshev coefficients A011782. - Paul Barry, Mar 16 2003
From Paul Barry, Mar 16 2003: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=1, a(1)=2.
G.f.: (1 - 2*x)/((1 - x)*(1 - 3*x)). (End)
E.g.f.: exp(2*x)*cosh(x). - Paul Barry, Apr 05 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k). - Paul Barry, May 08 2003
This sequence is also the partial sums of the first 3 Stirling numbers of second kind: a(n) = S(n+1, 1) + S(n+1, 2) + S(n+1, 3) for n >= 0; alternatively it is the number of partitions of [n+1] into 3 or fewer parts. - Mike Zabrocki, Jun 21 2004
For c=3, a(n) = (c^n)/c! + Sum_{k=1..c-2}((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
The i-th term of the sequence is the entry (1, 1) in the i-th power of the 2 X 2 matrix M = ((2, 1), (1, 2)). - Simone Severini, Oct 15 2005
If p[i]=fibonacci(2i-3) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
INVERT transform of A001519: [1, 1, 2, 5, 13, 34, ...]. - Gary W. Adamson, Jun 13 2011
a(n) = M^n*[1,1,1,0,0,0,...], leftmost column term; where M = an infinite bidiagonal matrix with all 1's in the superdiagonal and (1,2,3,...) in the main diagonal and the rest zeros. - Gary W. Adamson, Jun 23 2011
a(n) = M^n*[1,1,1,0,0,0,...], top entry term; where M is an infinite bidiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) as the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 24 2011
a(n) = A201730(n,0). - Philippe Deléham, Dec 05 2011
a(n) = A006342(n) + A006342(n-1). - Yuchun Ji, Sep 19 2018
From Dmitry Efimov, Oct 29 2021: (Start)
a(2*m+1) = Product_{k=-m..m} (2+i*tan(Pi*k/(2*m+1))),
a(2*m) = Product_{k=-m..m-1} (2+i*tan(Pi*(2*k+1)/(4*m))),
where i is the imaginary unit. (End)

A001047 a(n) = 3^n - 2^n.

Original entry on oeis.org

0, 1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099, 527345, 1586131, 4766585, 14316139, 42981185, 129009091, 387158345, 1161737179, 3485735825, 10458256051, 31376865305, 94134790219, 282412759265, 847255055011, 2541798719465, 7625463267259, 22876524019505
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the sum of the elements in the n-th row of triangle pertaining to A036561. - Amarnath Murthy, Jan 02 2002
Number of 2 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
With offset 1, partial sums of A027649. - Paul Barry, Jun 24 2003
Number of distinct lines through the origin in the n-dimensional lattice of side length 2. A049691 has the values for the 2-dimensional lattice of side length n. - Joshua Zucker, Nov 19 2003
a(n+1)/(n+1)=(3*3^n-2*2^n)/(n+1) is the second binomial transform of the harmonic sequence 1/(n+1). - Paul Barry, Apr 19 2005
a(n+1) is the sum of n-th row of A036561. - Reinhard Zumkeller, May 14 2006
The sequence gives the sum of the lengths of the segments in Cantor's dust generating sequence up to the i-th step. Measurement unit = length of the segment of i-th step. - Giorgio Balzarotti, Nov 18 2006
Let T be a binary relation on the power set P(A) of a set A having n = |A| elements such that for every element x, y of P(A), xTy if x is a proper subset of y. Then a(n) = |T|. - Ross La Haye, Dec 22 2006
From Alexander Adamchuk, Jan 04 2007: (Start)
a(n) is prime for n in A057468.
p divides a(p) - 1 for prime p.
Quotients (3^p - 2^p - 1)/p, where p = prime(n), are listed in A127071.
Numbers k such that k divides 3^k - 2^k - 1 are listed in A127072.
Pseudoprimes in A127072(n) include all powers of primes {2,3,7} and some composite numbers that are listed in A127073, which includes all Carmichael numbers A002997.
Numbers n such that n^2 divides 3^n - 2^n - 1 are listed in A127074.
5 divides a(2n).
5^2 divides a(2*5n).
5^3 divides a(2*5^2n).
5^4 divides a(2*5^3n).
7^2 divides a(6*7n).
13 divides a(4n).
13^2 divides a(4*13n).
19 divides a(3n).
19^2 divides a(3*19n).
23^2 divides a(11n).
23^3 divides a(11*23n).
23^4 divides a(11*23^2n).
29 divides a(7n).
p divides a((p-1)n) for prime p>3.
p divides a((p-1)/2) for prime p in A097934. Also primes p such that 6 is a square mod p, except {2,3}, A038876(n).
p^(k+1) divides a(p^k*(p-1)/2*n) for prime p in A097934.
p^(k+1) divides a(p^k*(p-1)*n) for prime p>3.
Note the exception that for p = 23, p^(k+2) divides a(p^k*(p-1)/2*n).
There are no more such exceptions for primes p up to 600000. (End)
a(n) divides a(q*(n+1)-1), for all q integer. Leonardo Sarasua, Apr 15 2024
Final digits of terms follow sequence 1,5,9,5. - Enoch Haga, Nov 26 2007
This is also the second column sequence of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below. - Wolfdieter Lang, Oct 08 2011
Partial sums give A000392. - Jon Perry, Apr 05 2014
For n >= 1, this is also row 2 of A281890: when consecutive positive integers are written as a product of primes in nondecreasing order, "3" occurs in n-th position a(n) times out of every 6^n. - Peter Munn, May 17 2017
a(n) is the number of ternary sequences of length n which include the digit 2. For example, a(2)=5 since the sequences are 02,20,12,21,22. - Enrique Navarrete, Apr 05 2021
a(n-1) is the number of ways we can form disjoint unions of two nonempty subsets of [n] such that the union contains n. For example, for n = 3, a(2) = 5 since the disjoint unions are {1}U{3}, {1}U{2,3}, {2}U{3}, {2}U{1,3}, and {1,2}U{3}. Cf. A000392 if we drop the requirement that the union contains n. - Enrique Navarrete, Aug 24 2021
Configures as a composite Koch Snowflake Fractal (see illustration in links) based on the five-fold division of the Cantor Square/Cantor Dust Fractal of (9^n-4^n)/5 see my illustration in (A016153). - John Elias, Oct 13 2021
Number of pairs (A,B) where B is a subset of {1,2,...,n} and A is a proper subset of B. - Jianing Song, Jun 18 2022
From Manfred Boergens, Mar 29 2023: (Start)
With regard to the comments by Ross La Haye and Jianing Song: Omitting "proper" gives A000244.
Number of pairs (A,B) where B is a nonempty subset of {1,2,...,n} and A is a nonempty subset of B. For nonempty proper subsets see a(n+1) in A028243. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 7. - Stefano Spezia, Nov 15 2023
a(n-1) is the number of all possible player-reduced binary games observed by each player in an nx2 game assuming the individual strategies of k < n - 1 players are fixed and the remaining n - k - 1 player will play as one, either maintaining their status quo strategies or jointly adopting an alternative strategy. - Ambrosio Valencia-Romero, Apr 11 2024

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 86-87.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = row sums of A091913, row 2 of A047969, column 1 of A090888 and column 1 of A038719.
Cf. partitions: A241766, A241759.
A diagonal of A262307.

Programs

  • Haskell
    a001047 n = a001047_list !! n
    a001047_list = map fst $ iterate (\(u, v) -> (3 * u + v, 2 * v)) (0, 1)
    -- Reinhard Zumkeller, Jun 09 2013
  • Magma
    [3^n - 2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
    
  • Maple
    seq(3^n - 2^n, n=0..40); # Giorgio Balzarotti, Nov 18 2006
    A001047:=1/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation, dropping the initial zero
  • Mathematica
    Table[ 3^n - 2^n, {n, 0, 25} ]
    LinearRecurrence[{5, -6}, {0, 1}, 25] (* Harvey P. Dale, Aug 18 2011 *)
    Numerator@NestList[(3#+1)/2&,1/2,100] (* Zak Seidov, Oct 03 2011 *)
  • PARI
    {a(n) = 3^n - 2^n};
    
  • Python
    [3**n - 2**n for n in range(25)] # Ross La Haye, Aug 19 2005; corrected by David Radcliffe, Jun 26 2016
    
  • Sage
    [lucas_number1(n, 5, 6) for n in range(26)]  # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: x/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
a(n) = 3*a(n-1) + 2^(n-1). - Jon Perry, Aug 23 2002
Starting 0, 0, 1, 5, 19, ... this is 3^n/3 - 2^n/2 + 0^n/6, the binomial transform of A086218. - Paul Barry, Aug 18 2003
a(n) = A083323(n)-1 = A056182(n)/2 = (A002783(n)-1)/2 = (A003063(n+2)-A003063(n+1))/2. - Ralf Stephan, Jan 12 2004
Binomial transform of A000225. - Ross La Haye, Feb 07 2005
a(n) = Sum_{k=0..n-1} binomial(n, k)*2^k. - Ross La Haye, Aug 20 2005
a(n) = 2^(2n) - A083324(n). - Ross La Haye, Sep 10 2005
a(n) = A112626(n, 1). - Ross La Haye, Jan 11 2006
E.g.f.: exp(3*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = A217764(n,1). - Ross La Haye, Mar 27 2013
a(n) = 2*a(n-1) + 3^(n-1). - Toby Gottfried, Mar 28 2013
a(n) = A000244(n) - A000079(n). - Omar E. Pol, Mar 28 2013
a(n) = Sum_{k=0..2} Stirling1(2,k)*(k+1)^n = c_2^{(-n)}, poly-Cauchy numbers. - Takao Komatsu, Mar 28 2013
a(n) = A227048(n,A098294(n)). - Reinhard Zumkeller, Jun 30 2013
a(n+1) = Sum_{k=0..n} 2^k*3^(n-k). - J. M. Bergot, Mar 27 2018
Sum_{n>=1} 1/a(n) = A329064. - Amiram Eldar, Nov 20 2020
a(n) = (1/2)*Sum_{k=0..n} binomial(n, k)*(2^(n-k) + 2^k - 2).
a(n) = A001117(n) + 2*A000918(n) + 1. - Ambrosio Valencia-Romero, Mar 08 2022
a(n) = A000225(n) + A028243(n+1). - Ambrosio Valencia-Romero, Mar 09 2022
From Peter Bala, Jun 27 2025: (Start)
exp(Sum_{n >=1} a(2*n)/a(n)*x^n/n) = Sum_{n >= 0} a(n+1)*x^n.
exp(Sum_{n >=1} a(3*n)/a(n)*x^n/n) = 1 + 19*x + 247*x^2 + ... is the g.f. of A019443.
exp(Sum_{n >=1} a(4*n)/a(n)*x^n/n) = 1 + 65*x + 2743*x^2 + ... is the g.f. of A383754.
The following are all examples of telescoping series:
Sum_{n >= 1} 6^n/(a(n)*a(n+1)) = 2, since 6^n/(a(n)*a(n+1)) = b(n) - b(n+1), where b(n) = 2^n/a(n);
Sum_{n >= 1} 18^n/(a(n)*a(n+1)*a(n+2)) = 22/75, since 18^n/(a(n)*a(n+1)*a(n+2)) = c(n) - c(n+1), where c(n) = (5*6^n - 2*4^n)/(15*a(n)*a(n+1));
Sum_{n >= 1} 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = 634/48735 since 54^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = d(n) - d(n+1), where d(n) = (57*18^n - 38*12^n + 8*8^n)/(513*a(n)*a(n+1)*a(n+2)).
Sum_{n >= 1} 6^n/(a(n)*a(n+2)) = 14/25; Sum_{n >= 1} (-6)^n/(a(n)*a(n+2)) = -6/25.
Sum_{n >= 1} 6^n/(a(n)*a(n+3)) = 306/1805.
Sum_{n >= 1} 6^n/(a(n)*a(n+4)) = 4282/80275; Sum_{n >= 1} (-6)^n/(a(n)*a(n+4)) = -1698/80275. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 24 2010

A001550 a(n) = 1^n + 2^n + 3^n.

Original entry on oeis.org

3, 6, 14, 36, 98, 276, 794, 2316, 6818, 20196, 60074, 179196, 535538, 1602516, 4799354, 14381676, 43112258, 129271236, 387682634, 1162785756, 3487832978, 10462450356, 31385253914, 94151567436, 282446313698, 847322163876
Offset: 0

Views

Author

Keywords

Comments

a(n)*(-1)^n, n>=0, gives the z-sequence for the Sheffer triangle A049458 ((signed) 3-restricted Stirling1 numbers), which is the inverse triangle of A143495 with offset [0,0] (3-restricted Stirling2 numbers). See the W. Lang link under A006232 for a- and z-sequences for Sheffer matrices. The a-sequence for each (signed) r-restricted Stirling1 Sheffer triangle is A027641/A027642 (Bernoulli numbers). - Wolfdieter Lang, Oct 10 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a001550 n = sum $ map (^ n) [1..3]  -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [1^n + 2^n + 3^n : n in [0..30]]; // Wesley Ivan Hurt, Jun 25 2020
    
  • Maple
    A001550:=-(3-12*z+11*z^2)/(z-1)/(3*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[1^n + 2^n + 3^n, {n, 0, 30}]
    CoefficientList[Series[(3-12x+11x^2)/(1-6x+11x^2-6x^3),{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6},{3,6,14},31] (* Harvey P. Dale, Apr 30 2011 *)
    Total[Range[3]^#]&/@Range[0,30] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    a(n)=1+2^n+3^n \\ Charles R Greathouse IV, Jun 10 2011
    
  • Python
    def A001550(n): return 3**n+(1<Chai Wah Wu, Nov 01 2024

Formula

From Michael Somos: (Start)
G.f.: (3 -12*x +11*x^2)/(1 -6*x +11*x^2 -6*x^3).
a(n) = 5*a(n-1) - 6*a(n-2) + 2. (End)
E.g.f.: exp(x) + exp(2*x) + exp(3*x). - Mohammad K. Azarian, Dec 26 2008
a(0)=3, a(1)=6, a(2)=14, a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - Harvey P. Dale, Apr 30 2011
a(n) = A007689(n) + 1. - Reinhard Zumkeller, Mar 01 2012
From Kai Wang, May 18 2020: (Start)
a(n) = 3*A000392(n+3) - 12*A000392(n+2) + 11*A000392(n+1).
A000392(n) = (3*a(n+1) - 12*a(n) + 10*a(n-1))/2. (End)

Extensions

Additional terms from Michael Somos
Attribute "conjectured" removed from Simon Plouffe's g.f. by R. J. Mathar, Mar 11 2009

A006095 Gaussian binomial coefficient [n, 2] for q = 2.

Original entry on oeis.org

0, 0, 1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
Offset: 0

Views

Author

Keywords

Comments

Number of 4-block coverings of an n-set where every element of the set is covered by exactly 3 blocks (if offset is 3), so a(n) = (1/4!)*(4^n-6*2^n+8). - Vladeta Jovovic, Feb 20 2001
Number of non-coprime pairs of polynomials (f,g) with binary coefficients where both f and g have degree n+1 and nonzero constant term. - Luca Mariot and Enrico Formenti, Sep 26 2016
Number of triplets found from the integers 1 to 2^n-1 by converting to binary and performing an XOR operation on the corresponding bits of each pair. Defining addition in this carryless way (0+0=1+1=0, 0+1=1+0=1), each triplet (A,B,C) has the property A+B=C, A+C=B and B+C=A. For example, n=3 gives the 7 triplets (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7) and (3,5,6). Each integer appears in the set of triplets 2^(n-1)-1 times, for example 3 for n=3. - Ian Duff, Oct 05 2019
Number of 2-dimensional vector subspaces of (Z_2)^n, so also number of Klein subgroups of the group (C_2)^n. - Robert FERREOL, Jul 28 2021

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

First differences: A006516.
Gaussian binomial coefficient [n, k] for q = 2: A000225 (k = 1), this sequence (k = 2), A006096 (k = 3), A006097 (k = 4), A006110 (k = 5), A022189 - A022195 (k = 6 thru 12).

Programs

  • Maple
    a:= n-> add((4^(n-1-j) - 2^(n-1-j))/2, j=0..n-1):
    seq(a(n), n=0..24); # Zerinvary Lajos, Jan 04 2007
    A006095 := -z^2/(z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation. [adapted to offset 0 by Peter Luschny, Jul 20 2021]
    a := n -> (2^n - 2)*(2^n - 1)/6:
    seq(a(n), n = 0..24); # Peter Luschny, Jul 20 2021
  • Mathematica
    Join[{a=0,b=0},Table[c=6*b-8*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    CoefficientList[Series[x^2/((1-x)(1-2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{7,-14,8},{0,0,1},30] (* Harvey P. Dale, Jul 22 2011 *)
    (* Next, using elementary symmetric functions *)
    f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[2, t[n]]
    Table[a[n], {n, 2, 32}]    (* A203235 *)
    Table[a[n]/2, {n, 2, 32}]  (* A006095 *)
    (* Clark Kimberling, Dec 31 2011 *)
    Table[QBinomial[n, 2, 2], {n, 0, 24}] (* Arkadiusz Wesolowski, Nov 12 2015 *)
  • PARI
    a(n) = (2^n - 1)*(2^(n-1) - 1)/3 \\ Charles R Greathouse IV, Jul 25 2011
    
  • PARI
    concat([0, 0], Vec(x^2/((1-x)*(1-2*x)*(1-4*x)) + O(x^50))) \\ Altug Alkan, Nov 12 2015
  • Sage
    [gaussian_binomial(n,2,2) for n in range(0,25)] # Zerinvary Lajos, May 24 2009
    

Formula

G.f.: x^2/((1-x)(1-2x)(1-4x)).
a(n) = (2^n - 1)*(2^(n-1) - 1)/3 = 4^n/6 - 2^(n-1) + 1/3.
Row sums of triangle A130324. - Gary W. Adamson, May 24 2007
a(n) = Stirling2(n+1,3) + Stirling2(n+1,4). - Zerinvary Lajos, Oct 04 2007; corrected by R. J. Mathar, Mar 19 2011
a(n) = A139250(2^(n-1) - 1), n >= 1. - Omar E. Pol, Mar 03 2011
a(n) = 4*a(n-1) + 2^(n-1) - 1, n >= 2. - Vincenzo Librandi, Mar 19 2011
a(0) = 0, a(1) = 0, a(2) = 1, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 22 2011
a(n) = Sum_{k=0..n-2} 2^k*C(2*n-k-2, k), n >= 2. - Johannes W. Meijer, Aug 19 2013
a(n) = Sum_{i=0..n-2, j=i..n-2} 2^{i+j} = 2^0 * (2^0 + 2^1 + ... + 2^(n-2)) + 2^1 * (2^1 + 2^2 + ... + 2^(n-2)) + ... + 2^(n-2) * 2^(n-2), n>1. - J. M. Bergot, May 08 2017
a(n) = a(n-1) + A000217(A000225(n-1)), n > 0. - Ivan N. Ianakiev, Dec 11 2017
E.g.f.: (2*exp(x)-3*exp(2*x)+exp(4*x))/6. - Paul Weisenhorn, Aug 22 2021
From Peter Bala, Jul 01 2025: (Start)
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(3*n)/b(n)*x^n/n ) = 1 + 7*x + 35*x^2 + ..., where b(n) = A000225(n) = 2^n - 1.
The following are examples of telescoping series:
Sum_{n >= 2} 2^n/a(n) = 6, follows from 1 - (1/6)*Sum_{k = 2..n} 2^k/a(k) = 1/(2^n - 1).
Sum_{n >= 2} 2^n/(a(n)*a(n+2)) = 6/49, follows from 1 - (49/6)*Sum_{k = 2..n} 2^k/(a(k)*a(k+2)) = 1/A006096(n+2);
Sum_{n >= 2} 4^n/(a(n)*a(n+2)) = 26/49, follows from 13 - (49/2)*Sum_{k = 2..n} 4^k/(a(k)*a(k+2)) = A086224(n)/A006096(n+2);
Sum_{n >= 2} 8^n/(a(n)*a(n+2)) = 129/49, follows from 43 - (49/3)*Sum_{k = 2..n} 8^k/(a(k)*a(k+2)) = A171479(n+1)/A006096(n+2). (End)

A007582 a(n) = 2^(n-1)*(1+2^n).

Original entry on oeis.org

1, 3, 10, 36, 136, 528, 2080, 8256, 32896, 131328, 524800, 2098176, 8390656, 33558528, 134225920, 536887296, 2147516416, 8590000128, 34359869440, 137439215616, 549756338176, 2199024304128, 8796095119360, 35184376283136, 140737496743936, 562949970198528
Offset: 0

Views

Author

Keywords

Comments

Let G_n be the elementary Abelian group G_n = (C_2)^n for n >= 1: A006516 is the number of times the number -1 appears in the character table of G_n and A007582 is the number of times the number 1. Together the two sequences cover all the values in the table, i.e., A006516(n) + A007582(n) = 2^(2n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 01 2001
Number of walks of length 2n+1 between two adjacent vertices in the cycle graph C_8. Example: a(1)=3 because in the cycle ABCDEFGH we have three walks of length 3 between A and B: ABAB, ABCB and AHAB. - Emeric Deutsch, Apr 01 2004
Smallest number containing in its binary representation two equal non-overlapping subwords of length n: A097295(a(n))=n and A097295(m)Reinhard Zumkeller, Aug 04 2004
a(n)^2 + (A006516(n))^2 = a(2n). E.g., a(3) = 36, A006516(3) = 28, a(6) = 2080. 36^2 + 28^2 = 2080. - Gary W. Adamson, Jun 17 2006
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either x equals y or x does not equal y. - Ross La Haye, Jan 02 2008
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A). This is just a simpler statement of my previous comment for this sequence. - Ross La Haye, Jan 10 2008
For n>0: A000120(a(n))=2, A023414(a(n))=2*(n-1), A087117(a(n))=n-1. - Reinhard Zumkeller, Jun 23 2009
a(n+1) written in base 2: 11, 1010, 100100, 10001000, 1000010000, ..., i.e., number 1, n times 0, number 1, n times 0 (A163449(n)). - Jaroslav Krizek, Jul 27 2009
a(n) for n >= 1 is a bisection of A001445(n+1). - Jaroslav Krizek, Aug 14 2009
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times sum_{k=0..n} binomial(n,k)*k^q, then A007582(x)= sum_{k=0..x-1} T(x,k)*2^k. - John M. Campbell, Nov 16 2011
a(n) gives the number of pairs (r, s) such that 0 <= r <= s <= (2^n)-1 that satisfy AND(r, s, XOR(r, s)) = 0. - Ramasamy Chandramouli, Aug 30 2012
a(n) = A000217(2^n) = 2^(2n-1) + 2^(n-1) is the nearest triangular number above 2^(2n-1); cf. A006516, A233327. - Antti Karttunen, Feb 26 2014
Consider the quantum spin-1/2 chain with even number of sites L (physics, condensed matter theory). The spectrum of the Hamiltonian can be classified according to symmetries. If the only symmetry of the spin Hamiltonian is Parity, i.e., reflection with respect to the middle of the chain (see e.g. the transverse-field Ising model with open boundary conditions), then the dimension of the p=+1 parity sector is given by a(n) with n=L/2. - Marin Bukov, Mar 11 2016
a(n) is also the total number of words of length n, over an alphabet of four letters, of which one of them appears an even number of times. See the Lekraj Beedassy, Jul 22 2003, comment on A006516 (4-letter odd case), and the Balakrishnan reference there. For the 1- to 11-letter cases, see the crossrefs. - Wolfdieter Lang, Jul 17 2017
a(n) is the number of nonisomorphic spanning trees of the cyclic snake formed with n+1 copies of the cycle on 4 vertices. A cyclic snake is a connected graph whose block-cutpoint is a path and all its n blocks are isomorphic to the cycle C_m. - Christian Barrientos, Sep 05 2024
Also, with offset 1, the cogrowth sequence of the dihedral group with 16 elements, D8 = . - Sean A. Irvine, Nov 06 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006516.
Cf. A134308.
Cf. A102573.
The number of words of length n with m letters, one of them appearing an even number of times is for m = 1..11: A000035, A011782, A007051, A007582, A081186, A081187, A081188, A081189, A081190, A060531, A081192. - Wolfdieter Lang, Jul 17 2017

Programs

  • Magma
    [Binomial(2^n + 1, 2) : n in [0..30]]; // Wesley Ivan Hurt, Jul 03 2020
  • Maple
    seq(binomial(-2^n, 2), n=0..23); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[ Binomial[2^n + 1, 2], {n, 0, 23}] (* Robert G. Wilson v, Jul 30 2004 *)
    LinearRecurrence[{6,-8},{1,3},30] (* Harvey P. Dale, Apr 08 2013 *)
  • Maxima
    A007582(n):=2^(n-1)*(1+2^n)$ makelist(A007582(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n)=if(n<0,0,2^(n-1)*(1+2^n))
    
  • PARI
    a(n)=sum(k=-n\4,n\4,binomial(2*n+1,n+1+4*k))
    

Formula

G.f.: (1-3*x)/((1-2*x)*(1-4*x)). C(1+2^n, 2) where C(n, 2) is n-th triangular number A000217.
Binomial transform of A007051. Inverse binomial transform of A081186. - Paul Barry, Apr 07 2003
E.g.f.: exp(3*x)*cosh(x). - Paul Barry, Apr 07 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k)*3^(n-2*k). - Paul Barry, May 08 2003
a(n+1) = 4*a(n) - 2^n; see also A049775. a(n) = 2^(n-1)*A000051(n). - Philippe Deléham, Feb 20 2004
a(n) = 6*a(n-1) - 8*a(n-2). - Emeric Deutsch, Apr 01 2004
Row sums of triangle A134308. - Gary W. Adamson, Oct 19 2007
a(n) = StirlingS2(2^n + 1,2^n) = 1 + 2*StirlingS2(n+1,2) + 3*StirlingS2(n+1,3) + 3*StirlingS2(n+1,4) = StirlingS2(n+2,2) + 3(StirlingS2(n+1,3) + StirlingS2(n+1,4)). - Ross La Haye, Mar 01 2008
a(n) = StirlingS2(2^n + 1,2^n) = 1 + 2*StirlingS2(n+1,2) + 3*StirlingS2(n+1,3) + 3*StirlingS2(n+1,4) = StirlingS2(n+2,2) + 3(StirlingS2(n+1,3) + StirlingS2(n+1,4)). - Ross La Haye, Apr 02 2008
a(n) = A000079(n) + A006516(n). - Yosu Yurramendi, Aug 06 2008
a(n) = A028403(n+1) / 4. - Jaroslav Krizek, Jul 27 2009
a(n) = Sum_{k=-floor(n/4)..floor(n/4)} binomial(2*n,n+4*k)/2. - Mircea Merca, Jan 28 2012
G.f.: Q(0)/2 where Q(k) = 1 + 2^k/(1 - 2*x/(2*x + 2^k/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 10 2013
a(n) = Sum_{k=1..2^n} k. - Joerg Arndt, Sep 01 2013
a(n) = (1/3) * Sum_{k=2^n..2^(n+1)} k. - J. M. Bergot, Jan 26 2015
a(n+1) = 2*a(n) + 4^n. - Yuchun Ji, Mar 10 2017

A016269 Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.

Original entry on oeis.org

1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, 7859215, 31964205, 129442951, 522538389, 2104469695, 8460859965, 33972448951, 136276954149, 546269553775, 2188563950925, 8764714059751, 35090233104309, 140455067207455, 562102681589085, 2249257981411351
Offset: 0

Views

Author

Keywords

Comments

Half the number of 2 X (n+2) binary arrays with both a path of adjacent 1's and a path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
As (0,0,1,9,55,...) this is the third binomial transform of cosh(x)-1. It is the binomial transform of A000392, when this has two leading zeros. Its e.g.f. is then exp(3x)cosh(x) - exp(3x) and a(n) = (4^n - 2*3^n + 2^n)/2. - Paul Barry, May 13 2003
Let P(A) be the power set of an n-element set A. Then a(n-2) is the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x. - Ross La Haye, Jan 10 2008
a(n) also gives the third column sequence of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below, and comments on the general case under A193685. - Wolfdieter Lang, Oct 08 2011
a(n) is also the number of even binomial coefficients in rows 0 through 2^(n+1)-1 of Pascal's triangle. - Aaron Meyerowitz, Oct 29 2013

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,2).

Crossrefs

Equals (1/2) A038721(n+1). First differences of A000453. Partial sums of A027650. Pairwise sums of A099110. Odd part of A019333.

Programs

Formula

G.f.: 1/((1-2*x)*(1-3*x)*(1-4*x)).
a(n-2) = (2^n)*(2^n - 1)/2 - 3^n + 2^n.
From Hieronymus Fischer, Jun 25 2007: (Start)
a(n) = Sum_{0<=i,j,k,<=n, i+j+k=n} 2^i*3^j*4^k.
a(n) = 2^(n+1)*(1+2^(n+2))-3^(n+2). (End)
a(n) = 3*StirlingS2(n+3,4) + StirlingS2(n+3,3). - Ross La Haye, Jan 10 2008
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,2), (n >= 2). - Milan Janjic, Apr 26 2009
E.g.f.: (d^2/dx^2) (exp(2*x)*((exp(x)-1)^2)/2!). See the Sheffer comment given above. - Wolfdieter Lang, Oct 08 2011
a(n) = A006516(n+2) - A001047(n+2). - Ross La Haye, Jan 26 2016
a(n) = A006516(n+1) + 3*a(n-1), n>=1, a(0)=1. - Carlos A. Rico A., Jun 22 2019

A007581 a(n) = (2^n+1)*(2^n+2)/6.

Original entry on oeis.org

1, 2, 5, 15, 51, 187, 715, 2795, 11051, 43947, 175275, 700075, 2798251, 11188907, 44747435, 178973355, 715860651, 2863377067, 11453377195, 45813246635, 183252462251, 733008800427, 2932033104555, 11728128223915, 46912504507051, 187650001250987
Offset: 0

Views

Author

Keywords

Comments

Number of palindromic structures using a maximum of four different symbols. - Marks R. Nester
Dimension of the universal embedding of the symplectic dual polar space DSp(2n,2) (conjectured by A. Brouwer, proved by P. Li). - J. Taylor (jt_cpp(AT)yahoo.com), Apr 02 2004.
Apart from initial term, same as A124303. - Valery A. Liskovets, Nov 16 2006
Hankel transform is := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
a(n) is also the number of distinct solutions (avoiding permutations) to the equation: XOR(A,B,C)=0 where A,B,C are n-bit binary numbers. - Ramasamy Chandramouli, Jan 11 2009
The rank of the fundamental group of the Z_p^n - cobordism category in dimension 1+1 for the case p=2 (see paper below). The expression for any prime p is (p^(2n-1)+p^(n+1)-p^(n-1)+p^2-p-1)/(p^2-1). - Carlos Segovia Gonzalez, Dec 05 2012
The number of isomorphic classes of regular four coverings of a graph with respect to the identity automorphism (S. Hong and J. H. Kwak). - Carlos Segovia Gonzalez, Aug 01 2013
The density of a language with four letters (N. Moreira and R. Reis). - Carlos Segovia Gonzalez, Aug 01 2013

References

  • P. Li, On the Brouwer Conjecture for Dual Polar Spaces of Symplectic Type over GF(2). Preprint.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A278984.

Programs

Formula

a(n) = (3*2^(n-1) + 2^(2*n-1) + 1)/3.
a(n) = Sum_{k=1..4} Stirling2(n, k). - Winston Yang (winston(AT)cs.wisc.edu), Aug 23 2000
Binomial transform of 3^n/6 + 1/2 + 0^n/3, i.e., of A007051 with an extra leading 1. a(n) = binomial(2^n+2, 2^n-1)/2^n. - Paul Barry, Jul 19 2003
a(n) = C(2+2^n, 3)/2^n = a(n-1) + 2^(n-1) + 4^(n-3/2) = A092055(n)/A000079(n). - Henry Bottomley, Feb 19 2004
Second binomial transform of A001045(n-1) + 0^n/2. G.f.: (1-5*x+5*x^2)/((1-x)*(1-2*x)*(1-4*x)). - Paul Barry, Apr 28 2004
a(n) is the top entry of the vector M^n*[1,1,1,1,0,0,0,...], where M is an infinite bidiagonal matrix with M(r,r)=r, r >= 1, as the main diagonal, M(r,r+1)=1, and the rest zeros. ([1,1,1,...] is a column vector and transposing gives the same in terms of a leftmost column term.) - Gary W. Adamson, Jun 24 2011
a(0)=1, a(1)=2, a(2)=5, a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3). - Harvey P. Dale, Jul 24 2011
E.g.f.: (exp(2*x) + 1/3*exp(4*x) + 2/3*exp(x))/2 = G(0)/2; G(k)=1 + (2^k)/(3 - 6/(2 + 4^k - 3*x*(8^k)/(3*x*(2^k) + (k+1)/G(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 08 2011

A036561 Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Keywords

Comments

The triangle pertaining to this sequence has the property that every row, every column and every diagonal contains a nontrivial geometric progression. More interestingly every line joining any two elements contains a nontrivial geometric progression. - Amarnath Murthy, Jan 02 2002
Kappraff states (pp. 148-149): "I shall refer to this as Nicomachus' table since an identical table of numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150 A.D.)" The table was rediscovered during the Italian Renaissance by Leon Battista Alberti, who incorporated the numbers in dimensions of his buildings and in a system of musical proportions. Kappraff states "Therefore a room could exhibit a 4:6 or 6:9 ratio but not 4:9. This ensured that ratios of these lengths would embody musical ratios". - Gary W. Adamson, Aug 18 2003
After Nichomachus and Alberti several Renaissance authors described this table. See for instance Pierre de la Ramée in 1569 (facsimile of a page of his Arithmetic Treatise in Latin in the links section). - Olivier Gérard, Jul 04 2013
The triangle sums, see A180662 for their definitions, link Nicomachus's table with eleven different sequences, see the crossrefs. It is remarkable that these eleven sequences can be described with simple elegant formulas. The mirror of this triangle is A175840. - Johannes W. Meijer, Sep 22 2010
The diagonal sums Sum_{k} T(n - k, k) give A167762(n + 2). - Michael Somos, May 28 2012
Where d(n) is the divisor count function, then d(T(i,j)) = A003991, the rows of which sum to the tetrahedral numbers A000292(n+1). For example, the sum of the divisors of row 4 of this triangle (i = 4), gives d(16) + d(24) + d(36) + d(54) + d(81) = 5 + 8 + 9 + 8 + 5 = 35 = A000292(5). In fact, where p and q are distinct primes, the aforementioned relationship to the divisor function and tetrahedral numbers can be extended to any triangle of numbers in which the i-th row is of form {p^(i-j)*q^j, 0<=j<=i}; i >= 0 (e.g., A003593, A003595). - Raphie Frank, Nov 18 2012, corrected Dec 07 2012
Sequence (or tree) generated by these rules: 1 is in S, and if x is in S, then 2*x and 3*x are in S, and duplicates are deleted as they occur; see A232559. - Clark Kimberling, Nov 28 2013
Partial sums of rows produce Stirling numbers of the 2nd kind: A000392(n+2) = Sum_{m=1..(n^2+n)/2} a(m). - Fred Daniel Kline, Sep 22 2014
A permutation of A003586. - L. Edson Jeffery, Sep 22 2014
Form a word of length i by choosing a (possibly empty) word on alphabet {0,1} then concatenating a word of length j on alphabet {2,3,4}. T(i,j) is the number of such words. - Geoffrey Critzer, Jun 23 2016
Form of Zorach additive triangle (see A035312) where each number is sum of west and northwest numbers, with the additional condition that each number is GCD of the two numbers immediately below it. - Michel Lagneau, Dec 27 2018

Examples

			The start of the sequence as a triangular array read by rows:
   1
   2   3
   4   6   9
   8  12  18  27
  16  24  36  54  81
  32  48  72 108 162 243
  ...
The start of the sequence as a table T(n,k) n, k > 0:
    1    2    4    8   16   32 ...
    3    6   12   24   48   96 ...
    9   18   36   72  144  288 ...
   27   54  108  216  432  864 ...
   81  162  324  648 1296 2592 ...
  243  486  972 1944 3888 7776 ...
  ...
- _Boris Putievskiy_, Jan 08 2013
		

References

  • Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
  • Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.

Crossrefs

Cf. A001047 (row sums), A000400 (central terms), A013620, A007318.
Triangle sums (see the comments): A001047 (Row1); A015441 (Row2); A005061 (Kn1, Kn4); A016133 (Kn2, Kn3); A016153 (Fi1, Fi2); A016140 (Ca1, Ca4); A180844 (Ca2, Ca3); A180845 (Gi1, Gi4); A180846 (Gi2, Gi3); A180847 (Ze1, Ze4); A016185 (Ze2, Ze3). - Johannes W. Meijer, Sep 22 2010, Sep 10 2011
Antidiagonal cumulative sum: A000392; square arrays cumulative sum: A160869. Antidiagonal products: 6^A000217; antidiagonal cumulative products: 6^A000292; square arrays products: 6^A005449; square array cumulative products: 6^A006002.

Programs

  • Haskell
    a036561 n k = a036561_tabf !! n !! k
    a036561_row n = a036561_tabf !! n
    a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1]
    -- Reinhard Zumkeller, Jun 08 2013
    
  • Magma
    /* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
  • Maple
    A036561 := proc(n,k): 2^(n-k)*3^k end:
    seq(seq(A036561(n,k),k=0..n),n=0..9);
    T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9);
    # Johannes W. Meijer, Sep 22 2010, Sep 10 2011
  • Mathematica
    Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
  • PARI
    for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
    
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
    

Formula

T(n,k) = A013620(n,k)/A007318(n,k). - Reinhard Zumkeller, May 14 2006
T(n,k) = T(n,k-1) + T(n-1,k-1) for n>=1 and 1<=k<=n with T(n,0) = 2^n for n>=0. - Johannes W. Meijer, Sep 22 2010
T(n,k) = 2^(k-1)*3^(n-1), n, k > 0 read by antidiagonals. - Boris Putievskiy, Jan 08 2013
a(n) = 2^(A004736(n)-1)*3^(A002260(n)-1), n > 0, or a(n) = 2^(j-1)*3^(i-1) n > 0, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Jan 08 2013
G.f.: 1/((1-2x)(1-3yx)). - Geoffrey Critzer, Jun 23 2016
T(n,k) = (-1)^n * Sum_{q=0..n} (-1)^q * C(k+3*q, q) * C(n+2*q, n-q). - Marko Riedel, Jul 01 2024

A028243 a(n) = 3^(n-1) - 2^n + 1 (essentially Stirling numbers of second kind).

Original entry on oeis.org

0, 0, 2, 12, 50, 180, 602, 1932, 6050, 18660, 57002, 173052, 523250, 1577940, 4750202, 14283372, 42915650, 128878020, 386896202, 1161212892, 3484687250, 10456158900, 31372671002, 94126401612, 282395982050, 847221500580, 2541731610602, 7625329049532
Offset: 1

Views

Author

N. J. A. Sloane, Doug McKenzie (mckfam4(AT)aol.com)

Keywords

Comments

For n >= 3, a(n) is equal to the number of functions f: {1,2,...,n-1} -> {1,2,3} such that Im(f) contains 2 fixed elements. - Aleksandar M. Janjic and Milan Janjic, Mar 08 2007
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 02 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is not a subset of y and y is not a subset of x and x and y are disjoint. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if either 0) x is a proper subset of y or y is a proper subset of x, or 1) x is not a subset of y and y is not a subset of x and x and y are disjoint. Then a(n+2) = |R|. - Ross La Haye, Mar 19 2009
In the terdragon curve, a(n) is the number of triple-visited points in expansion level n. The first differences of this sequence (A056182) are the number of enclosed unit triangles since on segment expansion each unit triangle forms a new triple-visited point, and existing triple-visited points are unchanged. - Kevin Ryde, Oct 20 2020
a(n+1) is the number of ternary strings of length n that contain at least one 0 and one 1; for example, for n=3, a(4)=12 since the strings are the 3 permutations of 100, the 3 permutations of 110, and the 6 permutations of 210. - Enrique Navarrete, Aug 13 2021
From Sanjay Ramassamy, Dec 23 2021: (Start)
a(n+1) is the number of topological configurations of n points and n lines where the points lie at the vertices of a convex cyclic n-gon and the lines are the perpendicular bisectors of its sides.
a(n+1) is the number of 2n-tuples composed of n 0's and n 1's which have an interlacing signature. The signature of a 2n-tuple (v_1,...,v_{2n}) is the n-tuple (s_1,...,s_n) defined by s_i=v_i+v_{i+n}. The signature is called interlacing if after deleting the 1's, there are letters remaining and the remaining 0's and 2's are alternating. (End)
a(n+1) is the number of pairs (A,B) where B is a nonempty subset of {1,2,...,n} and A is a nonempty proper subset of B. If either "nonempty" or "proper" is omitted then see A001047. If "nonempty" and "proper" are omitted then see A000244. - Manfred Boergens, Mar 28 2023
a(n) is the number of (n-1) X (n-1) nilpotent Boolean relation matrices with rank equal to 1. a(n) = A060867(n-1) - A005061(n-1) (since every rank 1 matrix is either idempotent or nilpotent). - Geoffrey Critzer, Jul 13 2023
For odd n > 3, a(n) is also the number of minimum vertex colorings in the (n-1)-prism graph. - Eric W. Weisstein, Mar 05 2024

Crossrefs

Cf. A000392, A008277, A163626, A056182 (first differences), A000244, A001047.

Programs

  • Magma
    [3^(n-1) - 2*2^(n-1) + 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
    
  • Mathematica
    Table[2 StirlingS2[n, 3], {n, 24}] (* or *)
    Table[3^(n - 1) - 2*2^(n - 1) + 1, {n, 24}] (* or *)
    Rest@ CoefficientList[Series[-2 x^3/(-1 + x)/(-1 + 3 x)/(-1 + 2 x), {x, 0, 24}], x] (* Michael De Vlieger, Sep 24 2016 *)
  • PARI
    a(n) = 3^(n-1) - 2*2^(n-1) + 1 \\ G. C. Greubel, Nov 19 2017
  • Sage
    [stirling_number2(i,3)*2 for i in range(1,30)] # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = 2*S(n, 3) = 2*A000392(n). - Emeric Deutsch, May 02 2004
G.f.: -2*x^3/(-1+x)/(-1+3*x)/(-1+2*x) = -1/3 - (1/3)/(-1+3*x) + 1/(-1+2*x) - 1/(-1+x). - R. J. Mathar, Nov 22 2007
E.g.f.: (exp(3*x) - 3*exp(2*x) + 3*exp(x) - 1)/3. - Wolfdieter Lang, May 03 2017
E.g.f. with offset 0: exp(x)*(exp(x)-1)^2. - Enrique Navarrete, Aug 13 2021
a(n) = Sum_{k = 1..n-2} binomial(n-1, k) * (2^(n-k-1)-1). - Ocean Wong, Jan 03 2025
Showing 1-10 of 74 results. Next