A069396
Half the number of 3 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 25, 377, 4541, 48329, 476389, 4461489, 40306317, 354713977, 3060942133, 26020259201, 218626028573, 1820140085705, 15043088032837, 123602247055953, 1010793162739629, 8234370308667673, 66870924588036181
Offset: 2
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1))); // G. C. Greubel, Apr 22 2018
-
Drop[CoefficientList[Series[x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x + 1)/(4*x^2 - 6*x + 1), {x, 0, 50}], x], 2] (* G. C. Greubel, Apr 22 2018 *)
-
x='x+O('x^30); Vec(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2 -6*x+1)) \\ G. C. Greubel, Apr 22 2018
A069416
Half the number of n X 16 binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
32767, 2104469695, 123602247055953, 6475978445076745163
Offset: 1
A051112
Number of monotone Boolean functions of n variables with 4 mincuts. Also Sperner systems with 4 blocks.
Original entry on oeis.org
0, 0, 0, 0, 25, 2020, 82115, 2401910, 58089465, 1245331920, 24625121455, 460316430970, 8266174350005, 144171200793620, 2461016066613195, 41343340015862430, 686274244801356145, 11289648429330100120
Offset: 0
- J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, #8, s(n,4).
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean function, Belgrade, 1999, in preparation.
- Charles R Greathouse IV, Table of n, a(n) for n = 0..831 (next term has 1001 digits)
- K. S. Brown, Dedekind's Problem
- D. M. Cvetkovic, The number of antichains of finite power sets, Publ. Inst. Math., 13 (27), 1972, 5-9.
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for linear recurrences with constant coefficients, signature (82, -2970, 62700, -856713, 7947786, -51019100, 226259000, -678011136, 1304341632, -1445575680, 696729600).
- Index entries for sequences related to Boolean functions
-
Table[(1/4!)*(16^n-12*12^n+24*10^n+4*9^n-18*8^n+6*7^n-36*6^n+36*5^n+11*4^n-22*3^n+6*2^n),{n,0,20}] (* or *) LinearRecurrence[{82,-2970,62700,-856713,7947786,-51019100,226259000,-678011136,1304341632,-1445575680,696729600},{0,0,0,0,25,2020,82115,2401910,58089465,1245331920,24625121455},20] (* Harvey P. Dale, Nov 26 2019 *)
-
a(n)=(16^n-12*12^n+24*10^n+4*9^n-18*8^n+6*7^n-36*6^n+36*5^n+11*4^n -22*3^n+6*2^n)/24 \\ Charles R Greathouse IV, Mar 14 2012
A047707
Number of monotone Boolean functions of n variables with 3 mincuts. Also Sperner systems with 3 blocks.
Original entry on oeis.org
0, 0, 0, 2, 64, 1090, 14000, 153762, 1533504, 14356610, 128722000, 1119607522, 9528462944, 79817940930, 660876543600, 5424917141282, 44246078560384, 359144709794050, 2904688464582800, 23429048035827042, 188593339362097824
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,3).
- Michael De Vlieger, Table of n, a(n) for n = 0..1107
- K. S. Brown, Dedekind's problem.
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- G. Kilibarda, Enumeration of certain classes of antichains, Publications de l'Institut Mathematique, Nouvelle série, 97 (111) (2015), 69-87 DOI: 10.2298/PIM140406001K. See page 86, formula for alpha^hat(3,n).
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (28,-315,1820,-5684,9072,-5760).
-
Table[Binomial[2^n, 3] - (6^n - 5^n - 4^n + 3^n), {n, 20}] (* or *)
CoefficientList[Series[-2 x^3 (36 x^2 - 4 x - 1)/((2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1) (8 x - 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 26 2016 *)
-
a(n)=binomial(2^n,3)-(6^n-5^n-4^n+3^n) \\ Charles R Greathouse IV, Apr 08 2016
A051118
Number of monotone Boolean functions of n variables with 10 mincuts.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 1067771, 43506231489, 501425871595264, 2719674203584968630, 9172837864705015158979, 22524989249381408262409893, 44328073635887914351462953684, 74381256243136645820404637874910
Offset: 0
- J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.
A143494
Triangle read by rows: 2-Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 19, 9, 1, 16, 65, 55, 14, 1, 32, 211, 285, 125, 20, 1, 64, 665, 1351, 910, 245, 27, 1, 128, 2059, 6069, 5901, 2380, 434, 35, 1, 256, 6305, 26335, 35574, 20181, 5418, 714, 44, 1, 512, 19171, 111645, 204205, 156660, 58107, 11130, 1110, 54, 1
Offset: 2
Triangle begins
n\k|...2....3....4....5....6....7
=================================
2..|...1
3..|...2....1
4..|...4....5....1
5..|...8...19....9....1
6..|..16...65...55...14....1
7..|..32..211..285..125...20....1
...
T(4,3) = 5. The set {1,2,3,4} can be partitioned into three subsets such that 1 and 2 belong to different subsets in 5 ways: {{1}{2}{3,4}}, {{1}{3}{2,4}}, {{1}{4}{2,3}}, {{2}{3}{1,4}} and {{2}{4}{1,3}}; the remaining possibility {{1,2}{3}{4}} is not allowed.
From _Peter Bala_, Feb 23 2025: (Start)
The array factorizes as
/ 1 \ /1 \ /1 \ /1 \
| 2 1 | | 2 1 ||0 1 ||0 1 |
| 4 5 1 | = | 4 3 1 ||0 2 1 ||0 0 1 | ...
| 8 19 9 1 | | 8 7 4 1 ||0 4 3 1 ||0 0 2 1 |
|16 65 55 14 1| |16 15 11 6 1||0 8 7 4 1 ||0 0 4 3 1 |
|... | |... ||... ||... |
where, in the infinite product on the right-hand side, the first array is the Riordan array (1/(1 - 2*x), x/(1 - x)). See A055248. (End)
- Peter Bala, Factorising (r,b)-Stirling arrays
- S. Alex Bradt, Jennifer Elder, Pamela E. Harris, Gordon Rojas Kirby, Eva Reutercrona, Yuxuan (Susan) Wang, and Juliet Whidden, Unit interval parking functions and the r-Fubini numbers, arXiv:2401.06937 [math.CO], 2024. See page 2.
- Andrei Z. Broder, The r-Stirling numbers, Report Number: CS-TR-82-949, 1982, Stanford University, Department of Computer Science.
- Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984).
- C. B. Corcino, L. C. Hsu, and E. L. Tan, Asymptotic approximations of r-Stirling numbers, Approximation Theory Appl. 15, No. 3 13-25 (1999).
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, arXiv:math/0509207 [math.CO], 2005-2006.
- V. V. Mikhailov, Ordering of some boson operator functions, J. Phys A: Math. Gen. 16 (1983) 3817-3827.
- V. V. Mikhailov, Normal ordering and generalised Stirling numbers, J. Phys A: Math. Gen. 18 (1985) 231-235.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Technical Report TR 99-05, July 1999, Universität Wien.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
- M. d’Ocagne, Sur une classe de nombres remarquables, Amer. J. Math., Vol. 9 (1887), 353-380.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- Mark Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
-
with combinat: T := (n, k) -> (1/(k-2)!)*add ((-1)^(k-i)*binomial(k-2,i)*(i+2)^(n-2),i = 0..k-2): for n from 2 to 11 do seq(T(n, k), k = 2..n) end do;
-
t[n_, k_] := StirlingS2[n, k] - StirlingS2[n-1, k]; Flatten[ Table[ t[n, k], {n, 2, 11}, {k, 2, n}]] (* Jean-François Alcover, Dec 02 2011 *)
-
@CachedFunction
def stirling2r(n, k, r) :
if n < r: return 0
if n == r: return 1 if k == r else 0
return stirling2r(n-1,k-1,r) + k*stirling2r(n-1,k,r)
A143494 = lambda n,k: stirling2r(n, k, 2)
for n in (2..6):
[A143494(n, k) for k in (2..n)] # Peter Luschny, Nov 19 2012
A000453
Stirling numbers of the second kind, S(n,4).
Original entry on oeis.org
1, 10, 65, 350, 1701, 7770, 34105, 145750, 611501, 2532530, 10391745, 42355950, 171798901, 694337290, 2798806985, 11259666950, 45232115901, 181509070050, 727778623825, 2916342574750, 11681056634501, 46771289738810, 187226356946265, 749329038535350
Offset: 4
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. Brandts and C. Cihangir, Counting triangles that share their vertices with the unit n-cube, in Conference Applications of Mathematics 2013 in honor of the 70th birthday of Karel Segeth. Jan Brandts, Sergey Korotov, et al., eds., Institute of Mathematics AS CR, Prague 2013.
- Eldar Fischer, Johann A. Makowsky, and Vsevolod Rakita, MC-finiteness of restricted set partition functions, arXiv:2302.08265 [math.CO], 2023.
- M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 347
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
A000453:=1/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
-
t={}; Do[f=StirlingS2[n, 4]; AppendTo[t, f], {n, 120}]; t (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
CoefficientList[Series[1/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
LinearRecurrence[{10, -35, 50, -24}, {1, 10, 65, 350}, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 23 2012 *)
-
a(n)=(4^n-4*3^n+6*2^n-4)/24 \\ Charles R Greathouse IV, Sep 24 2015
A143395
Triangle read by rows: T(n,k) = number of forests of k labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 9, 1, 0, 15, 55, 18, 1, 0, 31, 285, 205, 30, 1, 0, 63, 1351, 1890, 545, 45, 1, 0, 127, 6069, 15421, 7770, 1190, 63, 1, 0, 255, 26335, 116298, 95781, 24150, 2282, 84, 1, 0, 511, 111645, 830845, 1071630, 416451, 62370, 3990, 108, 1
Offset: 0
T(3,2) = 9: {1}{2}<-3, {1}{3}<-2, {1}{2,3}, {2}{1}<-3, {2}{3}<-1, {2}{1,3}, {3}{1}<-2, {3}{2}<-1, {3}{1,2}.
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 9, 1;
0, 15, 55, 18, 1;
0, 31, 285, 205, 30, 1;
0, 63, 1351, 1890, 545, 45, 1;
0, 127, 6069, 15421, 7770, 1190, 63, 1;
...
From _Peter Bala_, Jan 07 2015: (Start)
T(4,2) = 55: There are 7 partitions of the set {1,2,3,4} into 2 blocks. For the 3 set partitions of the type {a,b}{c,d} we can choose a nonempty subset from each block in one of 3*3 ways giving 3*3*3 = 27 possibilities in all. The remaining 4 set partitions of {1,2,3,4} into 2 blocks are of the form {a,b,c}{d} and we can choose a nonempty subset from each block in 7*1 ways giving 4*7*1 = 28 possible choices. Thus in total T(4,2) = 27 + 28 = 55.
Recurrence equation example:
T(4,2) = sum {j = 1..3} (2^(4-j) - 1)*binomial(3,j)*T(j,1) = 7*3*1 + 3*3*3 + 1*1*7 = 55.
Connection constants:
Row 3 = [0, 7, 9, 1]. Hence x^3 = 7*x + 9*x*(x - 3) + x*(x - 4)*(x - 5); Row 4 = [0, 15, 55, 18, 1]. Hence x^4 = 15*x + 55*x*(x - 3) + 18*x*(x - 4)*(x - 5) + x*(x - 5)*(x - 6)*(x - 7).
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 6 1 ||0 3 1 ||0 0 1 |... = | 7 9 1 |
|15 21 9 1 ||0 7 6 1 ||0 0 3 1 | |15 55 18 1 |
|... ||0 15 21 9 1||0 0 7 6 1| |... |
|... ||... ||... | | |
(End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Eli Bagno, Riccardo Biagioli, and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Takao Komatsu, Eli Bagno, and David Garber, A q,r-analogue of poly-Stirling numbers of second kind with combinatorial applications, arXiv:2209.06674 [math.CO], 2022.
- Index entries for sequences related to rooted trees
-
[[(&+[Binomial(n,j)*StirlingSecond(j,k)*k^(n-j): j in [k..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
-
T:= (n, k)-> add(binomial(n,t)*Stirling2(t,k)*k^(n-t), t=k..n):
seq(seq(T(n, k), k=0..n), n=0..11);
-
t[0, 0]=1; t[n_, k_]:= SeriesCoefficient[Exp[y*Exp[x]*(Exp[x]-1)], {x, 0, n}, {y, 0, k}]*n!; Table[t[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 05 2013, after Vladeta Jovovic *)
Table[If[n==k==0, 1, If[k==0, 0, Sum[Binomial[n, j]*StirlingS2[j, k]* k^(n-j), {j,k,n}]]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2019 *)
-
{T(n,k) = sum(j=k, n, binomial(n,j)*stirling(j,k,2)*k^(n-j))};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 07 2019
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 2^(n+1)-1, 10) # Peter Luschny, Jan 18 2016
A084869
Number of 2-multiantichains of an n-set.
Original entry on oeis.org
1, 2, 5, 17, 71, 317, 1415, 6197, 26591, 112157, 466775, 1923077, 7863311, 31972397, 129459335, 522571157, 2104535231, 8460991037, 33972711095, 136277478437, 546270602351, 2188566048077, 8764718254055, 35090241492917
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
Table[2^(2*n-1) - 3^n + 3*2^(n-1), {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2015 *)
-
a(n) = 2^(2*n-1)-3^n+3*2^(n-1); \\ Altug Alkan, Sep 12 2017
A094033
Number of connected 2-element antichains on a labeled n-set.
Original entry on oeis.org
0, 0, 0, 3, 18, 75, 270, 903, 2898, 9075, 27990, 85503, 259578, 784875, 2366910, 7125303, 21425058, 64373475, 193317030, 580344303, 1741819338, 5227030875, 15684238350, 47059006503, 141189602418, 423593973075, 1270832250870
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Yahia Djemmada, Abdelghani Mehdaoui, László Németh, and László Szalay, The Fibonacci-Fubini and Lucas-Fubini numbers, arXiv:2407.04409 [math.CO], 2024. See p. 10.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Adam Roman, Igor T. Podolak and Agnieszka Deszynska, On the number of clusterings in a hierarchical classification model with overlapping clusters, Schedae Informaticae, Volume 20, 2011.
- Index entries for linear recurrences with constant coefficients, signature (6, -11, 6).
-
[seq(stirling2(n,3)*3,n=0..26)]; # Zerinvary Lajos, Dec 06 2006
-
Table[3 StirlingS2[n, 3], {n, 0, 26}] (* Michael De Vlieger, Nov 30 2015 *)
-
x='x+O('x^50); concat([0,0,0],Vec(serlaplace((exp(3*x)-3*exp(2*x)+3*exp(x)-1)/2!))) \\ G. C. Greubel, Oct 06 2017
Showing 1-10 of 71 results.
Comments