A006126
Number of hierarchical models on n labeled factors or variables with linear terms forced. Also number of antichain covers of a labeled n-set.
Original entry on oeis.org
2, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0
a(5) = 1 + 90 + 790 + 1895 + 2116 + 1375 + 490 + 115 + 20 + 2 = 6894.
There are 9 antichain covers of a labeled 3-set: {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
From _Gus Wiseman_, Feb 23 2019: (Start)
The a(0) = 2 through a(3) = 9 antichains:
{} {{1}} {{12}} {{123}}
{{}} {{1}{2}} {{1}{23}}
{{2}{13}}
{{3}{12}}
{{12}{13}}
{{12}{23}}
{{13}{23}}
{{1}{2}{3}}
{{12}{13}{23}}
(End)
- Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 08 2020]
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
- C. L. Mallows, personal communication.
- A. A. Mcintosh, personal communication.
- R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables, In Preparation.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. Baumann and H. Strass, On the number of bipolar Boolean functions, 2014, preprint.
- R. Baumann and H. Strass, On the number of bipolar Boolean functions, Journal of Logic and Computation, 27(8) (2017), 2431-2449.
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See p. 2.
- Florian Bridoux, Amélia Durbec, Kévin Perrot, and Adrien Richard, Complexity of fixed point counting problems in Boolean Networks, arXiv:2012.02513 [math.CO], 2020.
- Florian Bridoux, Nicolas Durbec, Kevin Perrot, and Adrien Richard, Complexity of Maximum Fixed Point Problem in Boolean Networks, Conference on Computability in Europe (CiE 2019) Computing with Foresight and Industry (Lecture Notes in Computer Science book series, Vol. 11558), Springer, Cham, 132-143.
- K. S. Brown, Dedekind's problem
- Patrick De Causmaecker and Stefan De Wannemacker, On the number of antichains of sets in a finite universe, arXiv:1407.4288 [math.CO], 2014.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- C. L. Mallows, Emails to N. J. A. Sloane, Jun-Jul 1991
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991
- Eric Weisstein's World of Mathematics, Antichain.
- Eric Weisstein's World of Mathematics, Cover.
- R. I. P. Wickramasinghe, Topics in log-linear models, Master of Science thesis in Statistics, Texas Tech University, Lubbock, TX, 2008. [From the A000372(2) - 1 = 4 hierarchical log-linear models on two factors X and Y, on p. 18 of his thesis, only Models 11 and 15 force all the linear terms (i.e., a(2) = 2). From the A000372(3) - 1 = 19 hierarchical log-linear models on three factors X, Y, and Z, on p. 36 of his thesis, only Models 11-19 force all the linear terms (i.e., a(3) = 9). - _Petros Hadjicostas_, Apr 08 2020]
- D. H. Wiedemann, Letter to N. J. A. Sloane, Nov 03, 1990
- D. H. Wiedermann, Email to N. J. A. Sloane, May 28 1991
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Cf.
A006602,
A014466,
A261005,
A293606,
A293993,
A305000,
A305844,
A306550,
A307249,
A317674,
A319721,
A320449.
-
nn=4;
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&]],{n,0,nn}] (* Gus Wiseman, Feb 23 2019 *)
A000372 = Cases[Import["https://oeis.org/A000372/b000372.txt", "Table"], {, }][[All, 2]];
lg = Length[A000372];
a372[n_] := If[0 <= n <= lg-1, A000372[[n+1]], 0];
a[n_] := Sum[(-1)^(n-k+1) Binomial[n, k-1] a372[k-1], {k, 0, lg}];
a /@ Range[0, lg-1] (* Jean-François Alcover, Jan 07 2020 *)
Last 3 terms from Michael Bulmer (mrb(AT)maths.uq.edu.au)
Antichain interpretation from
Vladeta Jovovic and Goran Kilibarda, Jul 31 2000
A016269
Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.
Original entry on oeis.org
1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, 7859215, 31964205, 129442951, 522538389, 2104469695, 8460859965, 33972448951, 136276954149, 546269553775, 2188563950925, 8764714059751, 35090233104309, 140455067207455, 562102681589085, 2249257981411351
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,2).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- K. S. Brown, Dedekind's problem
- John Elias, Illustration of Initial Terms: Inverse of the Sierpinski Triangle
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- N. M. Rivière, Recursive formulas on free distributive lattices, J. Combinatorial Theory 5 1968 229--234. MR0231764 (38 #92). - _N. J. A. Sloane_, May 12 2012
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
[(2^n)*(2^n-1)/2-3^n+2^n: n in [2..30]]; // Vincenzo Librandi, Oct 06 2017
-
a:= n-> Stirling2(n+4, 4)-Stirling2(n+3, 4): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 05 2007
-
CoefficientList[1/((1-2x)(1-3x)(1-4x)) + O[x]^30, x] (* Jean-François Alcover, Nov 28 2015 *)
LinearRecurrence[{9, -26, 24}, {1, 9, 55}, 40] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n)=(2^n)*(2^n-1)/2-3^n+2^n \\ Charles R Greathouse IV, Mar 22 2016
A047707
Number of monotone Boolean functions of n variables with 3 mincuts. Also Sperner systems with 3 blocks.
Original entry on oeis.org
0, 0, 0, 2, 64, 1090, 14000, 153762, 1533504, 14356610, 128722000, 1119607522, 9528462944, 79817940930, 660876543600, 5424917141282, 44246078560384, 359144709794050, 2904688464582800, 23429048035827042, 188593339362097824
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,3).
- Michael De Vlieger, Table of n, a(n) for n = 0..1107
- K. S. Brown, Dedekind's problem.
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- G. Kilibarda, Enumeration of certain classes of antichains, Publications de l'Institut Mathematique, Nouvelle série, 97 (111) (2015), 69-87 DOI: 10.2298/PIM140406001K. See page 86, formula for alpha^hat(3,n).
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (28,-315,1820,-5684,9072,-5760).
-
Table[Binomial[2^n, 3] - (6^n - 5^n - 4^n + 3^n), {n, 20}] (* or *)
CoefficientList[Series[-2 x^3 (36 x^2 - 4 x - 1)/((2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1) (8 x - 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 26 2016 *)
-
a(n)=binomial(2^n,3)-(6^n-5^n-4^n+3^n) \\ Charles R Greathouse IV, Apr 08 2016
A051118
Number of monotone Boolean functions of n variables with 10 mincuts.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 1067771, 43506231489, 501425871595264, 2719674203584968630, 9172837864705015158979, 22524989249381408262409893, 44328073635887914351462953684, 74381256243136645820404637874910
Offset: 0
- J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.
A084869
Number of 2-multiantichains of an n-set.
Original entry on oeis.org
1, 2, 5, 17, 71, 317, 1415, 6197, 26591, 112157, 466775, 1923077, 7863311, 31972397, 129459335, 522571157, 2104535231, 8460991037, 33972711095, 136277478437, 546270602351, 2188566048077, 8764718254055, 35090241492917
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
Table[2^(2*n-1) - 3^n + 3*2^(n-1), {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2015 *)
-
a(n) = 2^(2*n-1)-3^n+3*2^(n-1); \\ Altug Alkan, Sep 12 2017
A094033
Number of connected 2-element antichains on a labeled n-set.
Original entry on oeis.org
0, 0, 0, 3, 18, 75, 270, 903, 2898, 9075, 27990, 85503, 259578, 784875, 2366910, 7125303, 21425058, 64373475, 193317030, 580344303, 1741819338, 5227030875, 15684238350, 47059006503, 141189602418, 423593973075, 1270832250870
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Yahia Djemmada, Abdelghani Mehdaoui, László Németh, and László Szalay, The Fibonacci-Fubini and Lucas-Fubini numbers, arXiv:2407.04409 [math.CO], 2024. See p. 10.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Adam Roman, Igor T. Podolak and Agnieszka Deszynska, On the number of clusterings in a hierarchical classification model with overlapping clusters, Schedae Informaticae, Volume 20, 2011.
- Index entries for linear recurrences with constant coefficients, signature (6, -11, 6).
-
[seq(stirling2(n,3)*3,n=0..26)]; # Zerinvary Lajos, Dec 06 2006
-
Table[3 StirlingS2[n, 3], {n, 0, 26}] (* Michael De Vlieger, Nov 30 2015 *)
-
x='x+O('x^50); concat([0,0,0],Vec(serlaplace((exp(3*x)-3*exp(2*x)+3*exp(x)-1)/2!))) \\ G. C. Greubel, Oct 06 2017
A094037
Number of connected 6-element antichains on a labeled n-set.
Original entry on oeis.org
0, 0, 0, 0, 1, 1345, 738741, 185165477, 29458046177, 3541242666045, 354515664467077, 31326419674855789, 2535191648955942273, 192567615994193565125, 13962461827318220986133, 978010022290154153870661
Offset: 0
A084883
Number of (k,m,n)-multiantichains of multisets with k=3 and m=6.
Original entry on oeis.org
1, 3, 64, 8022, 6822072, 14068794534, 26314469636622, 37310026340520678, 42667193588371160460, 42169580808988409450310, 37803058273249518925923210, 31733179110752959606870643334
Offset: 0
A051113
Number of monotone Boolean functions of n variables with 5 mincuts.
Original entry on oeis.org
0, 0, 0, 0, 6, 2146, 304752, 25400564, 1557306954, 78817977462, 3513106214484, 143429796694888, 5501383287745422, 201652447559180618, 7148287976359243896, 247151326758617289372, 8386495692534098616210, 280574309728711561269214, 9286566498536162168164188
Offset: 0
- J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean function, Belgrade, 1999, in preparation.
A051114
Number of monotone Boolean functions of n variables with 6 mincuts.
Original entry on oeis.org
0, 0, 0, 0, 1, 1380, 759457, 192504214, 31169837405, 3827970163920, 392135190780649, 35468973527445018, 2937270598777421269, 228156280366446932500, 16904255174464832812001, 1208995011493806361868862, 84197134590686932418878093, 5746616155270206518199693720
Offset: 0
- J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.
- Colin Barker, Table of n, a(n) for n = 0..500
- K. S. Brown, Dedekind's Problem
- V. Jovovic, Illustration for A016269, A047707, A051112-A051118
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Index entries for sequences related to Boolean functions
Showing 1-10 of 43 results.
Comments