cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A006126 Number of hierarchical models on n labeled factors or variables with linear terms forced. Also number of antichain covers of a labeled n-set.

Original entry on oeis.org

2, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Keywords

Comments

An antichain cover is a cover such that no element of the cover is a subset of another element of the cover.
Also, the number of nondegenerate monotone Boolean functions of n variables in an n-variable Boolean algebra. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
Also, number of simplicial complexes on an n-element vertex set. - Richard Stanley, Feb 10 2019
There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A006602. The non-covering case is A000372, which is A014466 plus 1. - Gus Wiseman, Mar 31 2019
From Petros Hadjicostas, Apr 10 2020: (Start)
Hierarchical models are always nonempty because they always include an intercept (or overall effect).
The total number of log-linear hierarchical models on n labeled factors (categorical variables) with no forcing of terms is given by A000372(n) - 1 (Dedekind numbers minus 1).
Hierarchical log-linear models for analyzing contingency tables are defined in the classic book by Bishop, Fienberg, and Holland (1975). (End)

Examples

			a(5) = 1 + 90 + 790 + 1895 + 2116 + 1375 + 490 + 115 + 20 + 2 = 6894.
There are 9 antichain covers of a labeled 3-set: {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
From _Gus Wiseman_, Feb 23 2019: (Start)
The a(0) = 2 through a(3) = 9 antichains:
  {}    {{1}}  {{12}}    {{123}}
  {{}}         {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 08 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • C. L. Mallows, personal communication.
  • A. A. Mcintosh, personal communication.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables, In Preparation.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn=4;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&]],{n,0,nn}] (* Gus Wiseman, Feb 23 2019 *)
    A000372 = Cases[Import["https://oeis.org/A000372/b000372.txt", "Table"], {, }][[All, 2]];
    lg = Length[A000372];
    a372[n_] := If[0 <= n <= lg-1, A000372[[n+1]], 0];
    a[n_] := Sum[(-1)^(n-k+1) Binomial[n, k-1] a372[k-1], {k, 0, lg}];
    a /@ Range[0, lg-1] (* Jean-François Alcover, Jan 07 2020 *)

Formula

a(n) = Sum_{k = 1..C(n, floor(n/2))} b(k, n), where b(k, n) is the number of k-antichain covers of a labeled n-set.
Inverse binomial transform of A000372. - Gus Wiseman, Feb 24 2019

Extensions

Last 3 terms from Michael Bulmer (mrb(AT)maths.uq.edu.au)
Antichain interpretation from Vladeta Jovovic and Goran Kilibarda, Jul 31 2000
a(0) = 2 added by Gus Wiseman, Feb 23 2019
Name edited by Petros Hadjicostas, Apr 08 2020
a(9) using A000372 added by Bruno L. O. Andreotti, May 14 2023

A016269 Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.

Original entry on oeis.org

1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, 7859215, 31964205, 129442951, 522538389, 2104469695, 8460859965, 33972448951, 136276954149, 546269553775, 2188563950925, 8764714059751, 35090233104309, 140455067207455, 562102681589085, 2249257981411351
Offset: 0

Views

Author

Keywords

Comments

Half the number of 2 X (n+2) binary arrays with both a path of adjacent 1's and a path of adjacent 0's from top row to bottom row. - R. H. Hardin, Mar 21 2002
As (0,0,1,9,55,...) this is the third binomial transform of cosh(x)-1. It is the binomial transform of A000392, when this has two leading zeros. Its e.g.f. is then exp(3x)cosh(x) - exp(3x) and a(n) = (4^n - 2*3^n + 2^n)/2. - Paul Barry, May 13 2003
Let P(A) be the power set of an n-element set A. Then a(n-2) is the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x. - Ross La Haye, Jan 10 2008
a(n) also gives the third column sequence of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below, and comments on the general case under A193685. - Wolfdieter Lang, Oct 08 2011
a(n) is also the number of even binomial coefficients in rows 0 through 2^(n+1)-1 of Pascal's triangle. - Aaron Meyerowitz, Oct 29 2013

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,2).

Crossrefs

Equals (1/2) A038721(n+1). First differences of A000453. Partial sums of A027650. Pairwise sums of A099110. Odd part of A019333.

Programs

Formula

G.f.: 1/((1-2*x)*(1-3*x)*(1-4*x)).
a(n-2) = (2^n)*(2^n - 1)/2 - 3^n + 2^n.
From Hieronymus Fischer, Jun 25 2007: (Start)
a(n) = Sum_{0<=i,j,k,<=n, i+j+k=n} 2^i*3^j*4^k.
a(n) = 2^(n+1)*(1+2^(n+2))-3^(n+2). (End)
a(n) = 3*StirlingS2(n+3,4) + StirlingS2(n+3,3). - Ross La Haye, Jan 10 2008
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,2), (n >= 2). - Milan Janjic, Apr 26 2009
E.g.f.: (d^2/dx^2) (exp(2*x)*((exp(x)-1)^2)/2!). See the Sheffer comment given above. - Wolfdieter Lang, Oct 08 2011
a(n) = A006516(n+2) - A001047(n+2). - Ross La Haye, Jan 26 2016
a(n) = A006516(n+1) + 3*a(n-1), n>=1, a(0)=1. - Carlos A. Rico A., Jun 22 2019

A047707 Number of monotone Boolean functions of n variables with 3 mincuts. Also Sperner systems with 3 blocks.

Original entry on oeis.org

0, 0, 0, 2, 64, 1090, 14000, 153762, 1533504, 14356610, 128722000, 1119607522, 9528462944, 79817940930, 660876543600, 5424917141282, 44246078560384, 359144709794050, 2904688464582800, 23429048035827042, 188593339362097824
Offset: 0

Views

Author

Keywords

Comments

The paper by G. Kilibarda, Enumeration of certain classes of antichains, Publications de l'Institut Mathematique, Nouvelle série, 97 (111) (2015), mentions many sequences, but since only very condensed formulas are given, it is hard to match them with entries in the OEIS. It would be nice to add this reference to all the sequences that it mentions. - N. J. A. Sloane, Jan 01 2016
Term a(1108) has 1000 decimal digits. - Michael De Vlieger, Jan 26 2016

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,3).

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2^n, 3] - (6^n - 5^n - 4^n + 3^n), {n, 20}] (* or *)
    CoefficientList[Series[-2 x^3 (36 x^2 - 4 x - 1)/((2 x - 1) (3 x - 1) (4 x - 1) (5 x - 1) (6 x - 1) (8 x - 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 26 2016 *)
  • PARI
    a(n)=binomial(2^n,3)-(6^n-5^n-4^n+3^n) \\ Charles R Greathouse IV, Apr 08 2016

Formula

a(n) = (2^n)*(2^n - 1)*(2^n - 2)/6 - (6^n - 5^n - 4^n + 3^n).
G.f.: -2*x^3*(36*x^2-4*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(8*x-1)). - Colin Barker, Jul 31 2012
a(n) = Binomial(2^n,3) - (6^n - 5^n - 4^n + 3^n). - Ross La Haye, Jan 26 2016

A051118 Number of monotone Boolean functions of n variables with 10 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1067771, 43506231489, 501425871595264, 2719674203584968630, 9172837864705015158979, 22524989249381408262409893, 44328073635887914351462953684, 74381256243136645820404637874910
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

A084869 Number of 2-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 5, 17, 71, 317, 1415, 6197, 26591, 112157, 466775, 1923077, 7863311, 31972397, 129459335, 522571157, 2104535231, 8460991037, 33972711095, 136277478437, 546270602351, 2188566048077, 8764718254055, 35090241492917
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x = y. - Ross La Haye, Jan 11 2008

Crossrefs

Programs

  • Mathematica
    Table[2^(2*n-1) - 3^n + 3*2^(n-1), {n, 0, 20}] (* Vaclav Kotesovec, Oct 30 2015 *)
  • PARI
    a(n) = 2^(2*n-1)-3^n+3*2^(n-1); \\ Altug Alkan, Sep 12 2017

Formula

a(n) = (1/2!)*(4^n - 2*3^n + 3*2^n).
a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 11 2008
G.f.: -(13*x^2-7*x+1) / ((2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Nov 27 2012
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3). - Vaclav Kotesovec, Oct 30 2015
a(n) = 2^(2n-1) + 2^n + 2^(n-1) - 3^n = A000217(2^n+1) - A034472(n), for n >= 1. - Bob Selcoe, Sep 12 2017

A094033 Number of connected 2-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 3, 18, 75, 270, 903, 2898, 9075, 27990, 85503, 259578, 784875, 2366910, 7125303, 21425058, 64373475, 193317030, 580344303, 1741819338, 5227030875, 15684238350, 47059006503, 141189602418, 423593973075, 1270832250870
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Comments

Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x. - Ross La Haye, Jan 10 2008

Crossrefs

Programs

  • Maple
    [seq(stirling2(n,3)*3,n=0..26)]; # Zerinvary Lajos, Dec 06 2006
  • Mathematica
    Table[3 StirlingS2[n, 3], {n, 0, 26}] (* Michael De Vlieger, Nov 30 2015 *)
  • PARI
    x='x+O('x^50); concat([0,0,0],Vec(serlaplace((exp(3*x)-3*exp(2*x)+3*exp(x)-1)/2!))) \\ G. C. Greubel, Oct 06 2017

Formula

a(n) = 3 * A000392(n).
E.g.f.: (exp(3*x)-3*exp(2*x)+3*exp(x)-1)/2!.
From Colin Barker, Mar 31 2012: (Start)
a(n) = (3^n-3*2^n+3)/2.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
G.f.: 3*x^3/((1-x)*(1-2*x)*(1-3*x)). (End)

A094037 Number of connected 6-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 1, 1345, 738741, 185165477, 29458046177, 3541242666045, 354515664467077, 31326419674855789, 2535191648955942273, 192567615994193565125, 13962461827318220986133, 978010022290154153870661
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Formula

E.g.f.: (exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 339*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 600*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 1740*exp(19*x) + 615*exp(18*x) + 180*exp(17*x) + 435*exp(16*x) - 1445*exp(15*x) - 3270*exp(14*x) + 1710*exp(13*x) + 4620*exp(12*x) - 3360*exp(11*x) - 3210*exp(10*x) + 3360*exp(9*x) + 6810*exp(8*x) - 12465*exp(7*x) + 5985*exp(6*x) + 7110*exp(5*x) - 18555*exp(4*x) + 17884*exp(3*x) - 8352*exp(2*x) + 1764*exp(x) - 120)/6!.

A084883 Number of (k,m,n)-multiantichains of multisets with k=3 and m=6.

Original entry on oeis.org

1, 3, 64, 8022, 6822072, 14068794534, 26314469636622, 37310026340520678, 42667193588371160460, 42169580808988409450310, 37803058273249518925923210, 31733179110752959606870643334
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-multiantichain of multisets we mean an m-multiantichain of k-bounded multisets on an n-set. The elements of a multiantichain could have the multiplicities greater than 1. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Formula

a(n) = (1/6!)*(729^n - 30*486^n + 120*378^n + 60*324^n + 60*294^n - 360*279^n - 12*276^n - 720*252^n + 45*243^n + 90*234^n + 720*231^n + 120*216^n + 720*210^n - 240*205^n + 360*196^n - 720*189^n - 180*187^n + 720*186^n - 720*176^n + 120*168^n - 720*167^n + 360*165^n - 900*162^n - 720*157^n + 180*156^n + 720*148^n - 240*145^n + 720*138^n + 30*134^n - 240*129^n + 2700*126^n - 360*120^n + 180*111^n + 900*108^n - 20*102^n + 450*98^n - 5400*93^n - 5400*84^n + 685*81^n + 1350*78^n + 5400*77^n + 5400*70^n - 5400*63^n + 900*56^n - 8220*54^n + 16440*42^n + 2740*36^n - 16440*31^n + 4275*27^n + 4110*26^n - 25650*18^n + 25650*14^n + 10474*9^n - 20948*6^n + 7560*3^n).

A051113 Number of monotone Boolean functions of n variables with 5 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 6, 2146, 304752, 25400564, 1557306954, 78817977462, 3513106214484, 143429796694888, 5501383287745422, 201652447559180618, 7148287976359243896, 247151326758617289372, 8386495692534098616210, 280574309728711561269214, 9286566498536162168164188
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean function, Belgrade, 1999, in preparation.

Crossrefs

Formula

a(n) = 1/5! * (32^n-20 * 24^n+ 60 * 20^n+ 20 * 18^n+ 10 * 17^n-110 * 16^n-120 * 15^n+ 150 * 14^n+ 120 * 13^n-240 * 12^n+ 20 * 11^n+ 240 * 10^n+ 40 * 9^n-205 * 8^n+ 60 * 7^n-210 * 6^n+ 210 * 5^n+ 50 * 4^n-100 * 3^n+ 24 * 2^n).
G.f.: -2*x^4*(140561100029952000*x^15 -73258140662784000*x^14 -8396658614522880*x^13 +15284070825850368*x^12 -4918391338514880*x^11 +748203166795520*x^10 -45197506544400*x^9 -3280961201664*x^8 +887950976060*x^7 -80597007540*x^6 +3942400065*x^5 -98697251*x^4 +532770*x^3 +26970*x^2 -335*x -3) / ((2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)*(9*x -1)*(10*x -1)*(11*x -1)*(12*x -1)*(13*x -1)*(14*x -1)*(15*x -1)*(16*x -1)*(17*x -1)*(18*x -1)*(20*x -1)*(24*x -1)*(32*x -1)). - Colin Barker, Jul 14 2013

Extensions

More terms from Colin Barker, Jul 14 2013

A051114 Number of monotone Boolean functions of n variables with 6 mincuts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1380, 759457, 192504214, 31169837405, 3827970163920, 392135190780649, 35468973527445018, 2937270598777421269, 228156280366446932500, 16904255174464832812001, 1208995011493806361868862, 84197134590686932418878093, 5746616155270206518199693720
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, and Zoran Maksimovic

Keywords

References

  • J. L. Arocha, Antichains in ordered sets, (in Spanish) An. Inst. Mat. UNAM, vol. 27, 1987, 1-21.
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, Belgrade, 1999, in preparation.

Crossrefs

Formula

a(n) = (1/6!)*(64^n-30 * 48^n+ 120 * 40^n+ 60 * 36^n+ 60 * 34^n-12 * 33^n-345 * 32^n-720 * 30^n+ 810 * 28^n+ 120 * 27^n+ 480 * 26^n+ 360 * 25^n-480 * 24^n-720 * 23^n-240 * 22^n-540 * 21^n+ 1380 * 20^n+ 750 * 19^n+ 60 * 18^n-210 * 17^n-1535 * 16^n-1820 * 15^n+ 2250 * 14^n+ 1800 * 13^n-2820 * 12^n+ 300 * 11^n+ 2040 * 10^n+ 340 * 9^n-1815 * 8^n+ 510 * 7^n-1350 * 6^n+ 1350 * 5^n+ 274 * 4^n-548 * 3^n+ 120 * 2^n).

Extensions

More terms from Colin Barker, Nov 26 2014
Showing 1-10 of 43 results. Next