cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A048143 Number of labeled connected simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 84, 6348, 7743728, 2414572893530, 56130437190053299918162
Offset: 0

Views

Author

Greg Huber, May 12 1983

Keywords

Comments

Also number of connected antichains on a labeled n-set.

Examples

			For n=3 we could have 2 edges (in 3 ways), 3 edges (1 way), or 3 edges and a triangle (1 way), so a(3)=5.
a(5) = 1+75+645+1655+2005+1345+485+115+20+2 = 6348.
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 17 2006
Entry revised by N. J. A. Sloane, Jul 27 2006

A094037 Number of connected 6-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 1, 1345, 738741, 185165477, 29458046177, 3541242666045, 354515664467077, 31326419674855789, 2535191648955942273, 192567615994193565125, 13962461827318220986133, 978010022290154153870661
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Formula

E.g.f.: (exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 339*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 600*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 1740*exp(19*x) + 615*exp(18*x) + 180*exp(17*x) + 435*exp(16*x) - 1445*exp(15*x) - 3270*exp(14*x) + 1710*exp(13*x) + 4620*exp(12*x) - 3360*exp(11*x) - 3210*exp(10*x) + 3360*exp(9*x) + 6810*exp(8*x) - 12465*exp(7*x) + 5985*exp(6*x) + 7110*exp(5*x) - 18555*exp(4*x) + 17884*exp(3*x) - 8352*exp(2*x) + 1764*exp(x) - 120)/6!.

A094729 Number of connected ordered 2-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 7, 37, 151, 541, 1807, 5797, 18151, 55981, 171007, 519157, 1569751, 4733821, 14250607, 42850117, 128746951, 386634061, 1160688607, 3483638677, 10454061751, 31368476701, 94118013007, 282379204837, 847187946151, 2541664501741, 7625194831807
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[3*x] - 3*Exp[2*x] + 4*Exp[x] - 2, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{6,-11,6},{0,1,1,7},30] (* Harvey P. Dale, Aug 07 2023 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(exp(3*x)-3*exp(2*x) +4*exp(x)-2))) \\ G. C. Greubel, Oct 06 2017
    
  • PARI
    concat(0, Vec(x*(1 - 5*x + 12*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Oct 13 2017

Formula

E.g.f.: exp(3*x) - 3*exp(2*x) + 4*exp(x) - 2.
From Colin Barker, Jul 07 2013: (Start)
a(n) = 4-3*2^n+3^n for n>0.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3) for n>3.
G.f.: x*(1 - 5*x + 12*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
(End)

A094738 Number of connected 6-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 26, 702, 34746, 2873097, 317812783, 36594544008, 3875472781976, 368569834860663, 31872207293370225, 2555189550184175334, 193269748160593198186, 13986349926952570806549, 978803975916211424325827
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Maple
    E:=  (1/6!)*(exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 309*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 1200*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 3540*exp(19*x) + 615*exp(18*x) + 780*exp(17*x) + 585*exp(16*x) - 4295*exp(15*x) - 6870*exp(14*x) + 6210*exp(13*x) + 10020*exp(12*x) - 15960*exp(11*x) - 6510*exp(10*x) + 21960*exp(9*x) + 11610*exp(8*x) - 32715*exp(7*x) + 31185*exp(6*x) - 23670*exp(5*x) - 51405*exp(4*x) + 132334*exp(3*x) - 112152*exp(2*x) + 44304*exp(x) - 7560):
    S:= series(E,x,21):
    seq(coeff(S,x,i),i=0..20); # Robert Israel, Jul 14 2019

Formula

E.g.f.: (1/6!)*(exp(63*x) - 30*exp(47*x) + 120*exp(39*x) + 60*exp(35*x) + 60*exp(33*x) - 18*exp(32*x) - 309*exp(31*x) - 720*exp(29*x) + 810*exp(27*x) + 120*exp(26*x) + 480*exp(25*x) + 480*exp(24*x) - 1200*exp(23*x) - 720*exp(22*x) - 240*exp(21*x) - 900*exp(20*x) + 3540*exp(19*x) + 615*exp(18*x) + 780*exp(17*x) + 585*exp(16*x) - 4295*exp(15*x) - 6870*exp(14*x) + 6210*exp(13*x) + 10020*exp(12*x) - 15960*exp(11*x) - 6510*exp(10*x) + 21960*exp(9*x) + 11610*exp(8*x) - 32715*exp(7*x) + 31185*exp(6*x) - 23670*exp(5*x) - 51405*exp(4*x) + 132334*exp(3*x) - 112152*exp(2*x) + 44304*exp(x) - 7560).

A094036 Number of connected 5-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 6, 2005, 280971, 22795136, 1345702092, 65250058251, 2781911443317, 108660434574142, 3991349973006198, 140293749275697017, 4775521611056597583, 158758002632650598268, 5185922974307536588224
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Formula

E.g.f.: (exp(31*x)-20*exp(23*x)+60*exp(19*x)+20*exp(17*x)
+5*exp(16*x)-105*exp(15*x)-120*exp(14*x)+150*exp(13*x)+180*exp(12*x)
-300*exp(11*x)-110*exp(10*x)+380*exp(9*x)+160*exp(8*x)-575*exp(7*x)
+570*exp(6*x)-186*exp(5*x)-975*exp(4*x)+1645*exp(3*x)-1030*exp(2*x)
+274*exp(x)-24)/5!.

A094034 Number of connected 3-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 1, 38, 645, 7510, 71981, 617358, 4947685, 37972070, 283229661, 2072354878, 14964711125, 107078983830, 761312910541, 5388481567598, 38017703680965, 267622831854790, 1880882526962621, 13203901505935518, 92616363612417205
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(Exp[7*x] - 6*Exp[5*x] + 3*Exp[4*x] + 14*Exp[3*x] - 21*Exp[2*x] + 11*Exp[x] - 2)/3!, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
    LinearRecurrence[{22,-190,820,-1849,2038,-840},{0,0,0,1,38,645,7510},30] (* Harvey P. Dale, Sep 20 2022 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(-x^3*(5*x+1)*(56*x^2-11*x-1)/( (x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 14*exp(3*x) - 21*exp(2*x) + 11*exp(x) -2)/3!.
G.f.: -x^3*(5*x+1)*(56*x^2-11*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Nov 27 2012

A094035 Number of connected 4-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 20, 1655, 65305, 1794730, 40179930, 793030245, 14423331635, 248261291960, 4113063835540, 66327037011235, 1049050826515965, 16360528085273190, 252545239130514350, 3869090307434050625, 58948119057416280295, 894447719738683138420
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(Exp[15*x] - 12*Exp[11*x] + 24*Exp[9*x] - 14*Exp[7*x] + 27*Exp[6*x] - 60*Exp[5*x] - 24*Exp[4*x] + 155*Exp[3*x] - 141*Exp[2*x] + 50*Exp[x] - 6)/4!, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(serlaplace((exp(15*x) -12*exp(11*x) +24*exp(9*x) -14*exp(7*x) +27*exp(6*x) -60*exp(5*x) -24*exp(4*x) +155*exp(3*x) -141*exp(2*x) +50*exp(x) -6)/4!))) \\ G. C. Greubel, Oct 07 2017
    
  • PARI
    concat(vector(4), Vec(5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)) + O(x^30))) \\ Colin Barker, Oct 13 2017

Formula

E.g.f.: (exp(15*x) - 12*exp(11*x) + 24*exp(9*x) - 14*exp(7*x) + 27*exp(6*x) - 60*exp(5*x) - 24*exp(4*x) + 155*exp(3*x) - 141*exp(2*x) + 50*exp(x) - 6)/4!.
G.f.: 5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)). - Colin Barker, Oct 13 2017

A094730 Number of connected ordered 3-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 25, 337, 4321, 46681, 437305, 3721537, 29740561, 228000361, 1699890985, 12435686737, 89792976001, 642488104441, 4567920215065, 32331017955937, 228106608326641, 1605738151030921, 11285298643841545, 79223419486529137
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[7*x] - 6*Exp[5*x] + 3*Exp[4*x] + 17*Exp[3*x] - 30*Exp[2*x] + 21*Exp[x] - 6, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 17*exp(3*x) - 30*exp(2*x) + 21*exp(x) - 6))) \\ G. C. Greubel, Oct 08 2017

Formula

E.g.f.: exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 17*exp(3*x) - 30*exp(2*x) + 21*exp(x) - 6.
Empirical g.f.: -x*(5040*x^5 - 2686*x^4 + 843*x^3 - 193*x^2 + 21*x - 1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Jul 07 2013

A094731 Number of connected ordered 4-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 79, 2101, 63991, 1841461, 45677479, 986583781, 19210969591, 347527345621, 5968468471879, 98788140462661, 1592387628858391, 25181074712937781, 392680081411090279, 6061279724768728741, 92859536016650958391, 1414764491802643937941
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[15*x] - 12*Exp[11*x] + 24*Exp[9*x] - 8*Exp[7*x] + 27*Exp[6*x] - 96*Exp[5*x] - 6*Exp[4*x] + 246*Exp[3*x] - 288*Exp[2*x] + 138*Exp[x] - 26, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(exp(15*x) -12*exp(11*x) +24*exp(9*x) -8*exp(7*x) +27*exp(6*x) -96*exp(5*x) -6*exp(4*x) +246*exp(3*x) -288*exp(2*x) +138*exp(x) -26))) \\ G. C. Greubel, Oct 08 2017
    
  • PARI
    concat(0, Vec(x*(1 - 62*x + 1717*x^2 - 27062*x^3 + 285547*x^4 - 1926074*x^5 + 8088135*x^6 - 28645362*x^7 + 105534360*x^8 - 194594400*x^9) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 9*x)*(1 - 11*x)*(1 - 15*x)) + O(x^30))) \\ Colin Barker, Oct 13 2017

Formula

E.g.f.: exp(15*x) - 12*exp(11*x) + 24*exp(9*x) - 8*exp(7*x) + 27*exp(6*x) - 96*exp(5*x) - 6*exp(4*x) + 246*exp(3*x) - 288*exp(2*x) + 138*exp(x) - 26.
G.f.: x*(1 - 62*x + 1717*x^2 - 27062*x^3 + 285547*x^4 - 1926074*x^5 + 8088135*x^6 - 28645362*x^7 + 105534360*x^8 - 194594400*x^9) / ((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 6*x)*(1 - 7*x)*(1 - 9*x)*(1 - 11*x)*(1 - 15*x)). - Colin Barker, Oct 13 2017

A094732 Number of connected ordered 5-element multiantichains on a labeled n-set.

Original entry on oeis.org

0, 1, 1, 241, 11761, 736801, 50524321, 3176975761, 171220124881, 8021076673921, 337296669440641, 13098877345981681, 479949442942292401, 16851170646696553441, 573314381587074123361, 19054886956855687698001
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 24 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[Exp[31*x] - 20*Exp[23*x] + 60*Exp[19*x] + 20*Exp[17*x] + 5*Exp[16*x] - 95*Exp[15*x] - 120*Exp[14*x] + 150*Exp[13*x] + 180*Exp[12*x] - 420*Exp[11*x] - 110*Exp[10*x] + 620*Exp[9*x] + 160*Exp[8*x] - 690*Exp[7*x] + 840*Exp[6*x] - 936*Exp[5*x] - 1140*Exp[4*x] + 3560*Exp[3*x] - 3010*Exp[2*x] + 1095*Exp[x] - 150, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 08 2017 *)

Formula

E.g.f.: exp(31*x) - 20*exp(23*x) + 60*exp(19*x) + 20*exp(17*x) + 5*exp(16*x) - 95*exp(15*x) - 120*exp(14*x) + 150*exp(13*x) + 180*exp(12*x) - 420*exp(11*x) - 110*exp(10*x) + 620*exp(9*x) + 160*exp(8*x) - 690*exp(7*x) + 840*exp(6*x) - 936*exp(5*x) - 1140*exp(4*x) + 3560*exp(3*x) - 3010*exp(2*x) + 1095*exp(x) - 150.
Showing 1-10 of 15 results. Next