cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 148 results. Next

A006126 Number of hierarchical models on n labeled factors or variables with linear terms forced. Also number of antichain covers of a labeled n-set.

Original entry on oeis.org

2, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Keywords

Comments

An antichain cover is a cover such that no element of the cover is a subset of another element of the cover.
Also, the number of nondegenerate monotone Boolean functions of n variables in an n-variable Boolean algebra. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
Also, number of simplicial complexes on an n-element vertex set. - Richard Stanley, Feb 10 2019
There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A006602. The non-covering case is A000372, which is A014466 plus 1. - Gus Wiseman, Mar 31 2019
From Petros Hadjicostas, Apr 10 2020: (Start)
Hierarchical models are always nonempty because they always include an intercept (or overall effect).
The total number of log-linear hierarchical models on n labeled factors (categorical variables) with no forcing of terms is given by A000372(n) - 1 (Dedekind numbers minus 1).
Hierarchical log-linear models for analyzing contingency tables are defined in the classic book by Bishop, Fienberg, and Holland (1975). (End)

Examples

			a(5) = 1 + 90 + 790 + 1895 + 2116 + 1375 + 490 + 115 + 20 + 2 = 6894.
There are 9 antichain covers of a labeled 3-set: {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}, {{1},{2},{3}}, {{1,2},{1,3},{2,3}}.
From _Gus Wiseman_, Feb 23 2019: (Start)
The a(0) = 2 through a(3) = 9 antichains:
  {}    {{1}}  {{12}}    {{123}}
  {{}}         {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 08 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • C. L. Mallows, personal communication.
  • A. A. Mcintosh, personal communication.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables, In Preparation.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn=4;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n]],SubsetQ],Union@@#==Range[n]&]],{n,0,nn}] (* Gus Wiseman, Feb 23 2019 *)
    A000372 = Cases[Import["https://oeis.org/A000372/b000372.txt", "Table"], {, }][[All, 2]];
    lg = Length[A000372];
    a372[n_] := If[0 <= n <= lg-1, A000372[[n+1]], 0];
    a[n_] := Sum[(-1)^(n-k+1) Binomial[n, k-1] a372[k-1], {k, 0, lg}];
    a /@ Range[0, lg-1] (* Jean-François Alcover, Jan 07 2020 *)

Formula

a(n) = Sum_{k = 1..C(n, floor(n/2))} b(k, n), where b(k, n) is the number of k-antichain covers of a labeled n-set.
Inverse binomial transform of A000372. - Gus Wiseman, Feb 24 2019

Extensions

Last 3 terms from Michael Bulmer (mrb(AT)maths.uq.edu.au)
Antichain interpretation from Vladeta Jovovic and Goran Kilibarda, Jul 31 2000
a(0) = 2 added by Gus Wiseman, Feb 23 2019
Name edited by Petros Hadjicostas, Apr 08 2020
a(9) using A000372 added by Bruno L. O. Andreotti, May 14 2023

A002494 Number of n-node graphs without isolated nodes.

Original entry on oeis.org

1, 0, 1, 2, 7, 23, 122, 888, 11302, 262322, 11730500, 1006992696, 164072174728, 50336940195360, 29003653625867536, 31397431814147073280, 63969589218557753586160, 245871863137828405125824848, 1787331789281458167615194471072, 24636021675399858912682459613241920
Offset: 0

Views

Author

Keywords

Comments

Number of unlabeled simple graphs covering n vertices. - Gus Wiseman, Aug 02 2018

Examples

			From _Gus Wiseman_, Aug 02 2018: (Start)
Non-isomorphic representatives of the a(4) = 7 graphs:
  (12)(34)
  (12)(13)(14)
  (12)(13)(24)
  (12)(13)(14)(23)
  (12)(13)(24)(34)
  (12)(13)(14)(23)(24)
  (12)(13)(14)(23)(24)(34)
(End)
		

References

  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
  • W. L. Kocay, Some new methods in reconstruction theory, Combinatorial Mathematics IX, 952 (1982) 89--114. [From Benoit Jubin, Sep 06 2008]
  • W. L. Kocay, On reconstructing spanning subgraphs, Ars Combinatoria, 11 (1981) 301--313. [From Benoit Jubin, Sep 06 2008]
  • J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-435; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals first differences of A000088. Cf. A006129 (labeled), A001349 (connected, inv. Euler Transf).

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> b(n$2, [])-`if`(n>0, b(n-1$2, []), 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2019
  • Mathematica
    << MathWorld`Graphs`
    Length /@ (gp = Select[ #, GraphicalPartitionQ] & /@
    Graphs /@ Range[9])
    nn = 20; g = Sum[NumberOfGraphs[n] x^n, {n, 0, nn}]; CoefficientList[Series[ g (1 - x), {x, 0, nn}], x]  (*Geoffrey Critzer, Apr 14 2012*)
    sysnorm[m_]:=If[Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Length[Union[sysnorm/@Select[Subsets[Select[Subsets[Range[n]],Length[#]==2&]],Union@@#==Range[n]&]]],{n,6}] (* Gus Wiseman, Aug 02 2018 *)
    b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1)/2] + Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := b[n, n, {}] - If[n > 0, b[n-1, n-1, {}], 0];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A002494(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n))-sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q,r in p.items()),prod(q**r*factorial(r) for q,r in p.items())) for p in partitions(n-1))) if n else 1 # Chai Wah Wu, Jul 03 2024

Formula

O.g.f.: (1-x)*G(x) where G(x) is o.g.f. for A000088. - Geoffrey Critzer, Apr 14 2012
a(n) = A327075(n)+A001349(n). - R. J. Mathar, Nov 21 2023

Extensions

More terms from Vladeta Jovovic, Apr 10 2000
a(0) added from David W. Wilson, Aug 24 2008

A323818 Number of connected set-systems covering n vertices.

Original entry on oeis.org

1, 1, 4, 96, 31840, 2147156736, 9223372011084915712, 170141183460469231602560095199828453376, 57896044618658097711785492504343953923912733397452774312021795134847892828160
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Comments

Unlike the nearly identical sequence A092918, this sequence does not count under a(1) the a single-vertex hypergraph with no edges.

Examples

			The a(2) = 4 set-systems:
  {{1, 2}}
  {{1}, {1,2}}
  {{2}, {1,2}}
  {{1}, {2}, {1,2}}
		

Crossrefs

Cf. A001187, A003465 (not necessarily connected), A016031, A048143, A092918, A293510, A317672, A323816, A323817 (no singletons), A323819 (unlabeled case).

Programs

  • Magma
    m:=12;
    f:= func< x | 1-x + Log( (&+[2^(2^n-1)*x^n/Factorial(n): n in [0..m+2]]) ) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 04 2022
    
  • Maple
    b:= n-> add(binomial(n, k)*2^(2^(n-k)-1)*(-1)^k, k=0..n):
    a:= proc(n) option remember; b(n)-`if`(n=0, 0, add(
           k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 30 2019
  • Mathematica
    nn=8;
    ser=Sum[2^(2^n-1)*x^n/n!,{n,0,nn}];
    Table[SeriesCoefficient[1-x+Log[ser],{x,0,n}]*n!,{n,0,nn}]
  • SageMath
    m=12;
    def f(x): return 1-x + log(sum(2^(2^n-1)*x^n/factorial(n) for n in range(m+2)))
    def A_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A_list(m) # G. C. Greubel, Oct 04 2022

Formula

E.g.f.: 1 - x + log(Sum_{n >= 0} 2^(2^n-1) * x^n/n!).
Logarithmic transform of A003465.

A000372 Dedekind numbers or Dedekind's problem: number of monotone Boolean functions of n variables, number of antichains of subsets of an n-set, number of elements in a free distributive lattice on n generators, number of Sperner families.

Original entry on oeis.org

2, 3, 6, 20, 168, 7581, 7828354, 2414682040998, 56130437228687557907788, 286386577668298411128469151667598498812366
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing function from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the empty antichain which contains no subsets and the antichain consisting of only the empty set.
a(n) is also equal to the number of upsets of an n-set S. A set U of subsets of S is an upset if whenever A is in U and B is a superset of A then B is in U. - W. Edwin Clark, Nov 06 2003
Also the number of simple games with n players in minimal winning form. - Fabián Riquelme, May 29 2011
The unlabeled case is A003182. - Gus Wiseman, Feb 20 2019
From Amiram Eldar, May 28 2021 and Michel Marcus, Apr 07 2023: (Start)
The terms were first calculated by:
a(0)-a(4) - Dedekind (1897)
a(5) - Church (1940)
a(6) - Ward (1946)
a(7) - Church (1965, verified by Berman and Kohler, 1976)
a(8) - Wiedemann (1991)
a(9) - Jäkel (2023)
a(9) - independently computed by Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, Tobias Kenter, Heinrich Riebler, Michael Lass, and Christian Plessl (2023)
(End)

Examples

			a(2)=6 from the antichains {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 2 through a(3) = 20 antichains:
  {}    {}     {}        {}
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
		

References

  • Ian Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, Antichains in ordered sets [in Spanish], Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico, Vol. 27 (1987), pp. 1-21.
  • Joel Berman and Peter Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, Vol. 121 (1976), pp. 103-124.
  • Garrett Birkhoff, Lattice Theory, American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • Michael A. Harrison, Introduction to Switching and Automata Theory, McGraw Hill, NY, 1965, p. 188.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • A. D. Korshunov, The number of monotone Boolean functions, Problemy Kibernet, No. 38, (1981), 5-108, 272. MR0640855 (83h:06013)
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, in D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971, pp. 173-181.
  • Saburo Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, pp. 38 and 214.
  • R. A. Obando, On the number of nondegenerate monotone boolean functions of n variables in an n-variable boolean algebra. In preparation.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n]],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    Table[Total[Boole[Table[UnateQ[BooleanFunction[k, n]], {k, 0, 2^(2^n) - 1}]]], {n, 0, 4}] (* Eric W. Weisstein, Jun 27 2023 *)

Formula

The asymptotics can be found in the Korshunov paper. - Boris Bukh, Nov 07 2003
a(n) = Sum_{k=1..n} binomial(n,k)*A006126(k) + 2, i.e., this sequence is the inverse binomial transform of A006126, plus 2. E.g., a(3) = 3*1 + 3*2 + 1*9 + 2 = 20. - Rodrigo A. Obando (R.Obando(AT)computer.org), Jul 26 2004
From J. M. Aranda, Jun 12 2021: (Start)
a(n) = A132581(2^n) = A132581(2^n-2^m) + A132581(2^n-2^(n-m)) for n >= m >= 0.
a(n) = A132582(3*2^n -1) for n >= 0.
(End)

Extensions

a(8) from D. H. Wiedemann, personal communication, Nov 03 1990
Additional comments from Michael Somos, Jun 10 2002
a(9) from C. Jäkel added by Michel Marcus, Apr 04 2023

A305078 Heinz numbers of connected integer partitions.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph.

Examples

			The sequence of all connected multiset multisystems (see A302242, A112798) begins:
   2: {{}}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
  59: {{7}}
  61: {{1,2,2}}
  63: {{1},{1},{1,1}}
  65: {{2},{1,2}}
  67: {{8}}
  71: {{1,1,3}}
  73: {{2,4}}
  79: {{1,5}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  87: {{1},{1,3}}
  89: {{1,1,1,2}}
  91: {{1,1},{1,2}}
  97: {{3,3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[300],Length[zsm[primeMS[#]]]==1&]

A014466 Dedekind numbers: monotone Boolean functions, or nonempty antichains of subsets of an n-set.

Original entry on oeis.org

1, 2, 5, 19, 167, 7580, 7828353, 2414682040997, 56130437228687557907787, 286386577668298411128469151667598498812365
Offset: 0

Views

Author

Keywords

Comments

A monotone Boolean function is an increasing functions from P(S), the set of subsets of S, to {0,1}.
The count of antichains includes the antichain consisting of only the empty set, but excludes the empty antichain.
Also counts bases of hereditary systems.
Also antichains of nonempty subsets of an n-set. The unlabeled case is A306505. The spanning case is A307249. This sequence has a similar description to A305000 except that the singletons must be disjoint from the other edges. - Gus Wiseman, Feb 20 2019
a(n) is the total number of hierarchical log-linear models on n labeled factors (categorical variables). See Wickramasinghe (2008) and Nardi and Rinaldo (2012). - Petros Hadjicostas, Apr 08 2020
From Lorenzo Sauras Altuzarra, Apr 02 2023: (Start)
a(n) is the number of labeled abstract simplicial complexes on n vertices.
A058673(n) <= a(n) <= A058891(n+1). (End)

Examples

			a(2)=5 from the antichains {{}}, {{1}}, {{2}}, {{1,2}}, {{1},{2}}.
From _Gus Wiseman_, Feb 20 2019: (Start)
The a(0) = 1 through a(3) = 19 antichains:
  {{}}  {{}}   {{}}      {{}}
        {{1}}  {{1}}     {{1}}
               {{2}}     {{2}}
               {{12}}    {{3}}
               {{1}{2}}  {{12}}
                         {{13}}
                         {{23}}
                         {{123}}
                         {{1}{2}}
                         {{1}{3}}
                         {{2}{3}}
                         {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
(End)
From _Lorenzo Sauras Altuzarra_, Apr 02 2023: (Start)
The 19 sets E such that ({1, 2, 3}, E) is an abstract simplicial complex:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1}, {2}}
  {{1}, {3}}
  {{2}, {3}}
  {{1}, {2}, {3}}
  {{1}, {2}, {1, 2}}
  {{1}, {3}, {1, 3}}
  {{2}, {3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}}
  {{1}, {2}, {3}, {1, 3}}
  {{1}, {2}, {3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}}
  {{1}, {2}, {3}, {1, 2}, {2, 3}}
  {{1}, {2}, {3}, {1, 3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
  {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
(End)
		

References

  • I. Anderson, Combinatorics of Finite Sets. Oxford Univ. Press, 1987, p. 38.
  • Jorge Luis Arocha, "Antichains in ordered sets" [ In Spanish ]. Anales del Instituto de Matematicas de la Universidad Nacional Autonoma de Mexico 27: 1-21 (1987).
  • J. Berman, "Free spectra of 3-element algebras," in R. S. Freese and O. C. Garcia, editors, Universal Algebra and Lattice Theory (Puebla, 1982), Lect. Notes Math. Vol. 1004, 1983.
  • G. Birkhoff, Lattice Theory. American Mathematical Society, Colloquium Publications, Vol. 25, 3rd ed., Providence, RI, 1967, p. 63.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 273.
  • J. Dezert, Fondations pour une nouvelle théorie du raisonnement plausible et paradoxal (la DSmT), Tech. Rep. 1/06769 DTIM, ONERA, Paris, page 33, January 2003.
  • J. Dezert, F. Smarandache, On the generating of hyper-powersets for the DSmT, Proceedings of the 6th International Conference on Information Fusion, Cairns, Australia, 2003.
  • M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 188.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 349.

Crossrefs

Equals A000372 - 1 = A007153 + 1.
Cf. A003182, A005465, A006126, A006602, A058673 (labeled matroids), A058891 (labeled hypergraphs), A261005, A293606, A304996, A305000, A306505, A307249, A317674, A319721, A320449, A321679.

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],SubsetQ]],{n,0,nn}] (* Gus Wiseman, Feb 20 2019 *)
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A@372 - 1 (* Jean-François Alcover, Jan 07 2020 *)

Formula

Binomial transform of A307249 (or A006126 if its zeroth term is 1). - Gus Wiseman, Feb 20 2019
a(n) >= A005465(n) (because the hierarchical log-linear models on n factors always include all the conditional independence models considered by I. J. Good in A005465). - Petros Hadjicostas, Apr 24 2020

Extensions

Last term from D. H. Wiedemann, personal communication.
Additional comments from Michael Somos, Jun 10 2002
Term a(9) (using A000372) from Joerg Arndt, Apr 07 2023

A285572 Number of finite sets of pairwise indivisible positive integers with least common multiple n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 9, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 9, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 23, 1, 2, 3, 1, 2, 9, 1, 3, 2, 9, 1, 10, 1, 2, 3, 3, 2, 9, 1, 5, 1, 2, 1, 23, 2, 2, 2, 4, 1, 23, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Apr 21 2017

Keywords

Examples

			The a(72)=10 sets are {72}, {8,9}, {8,18}, {8,36}, {9,24}, {18,24}, {24,36}, {6,8,9}, {8,9,12}, {8,12,18}.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[Rest[stableSets[Divisors[n],Divisible]],LCM@@#===n&]],{n,1,nn}]

A304716 Number of integer partitions of n whose distinct parts are connected.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 3, 15, 4, 18, 12, 25, 11, 41, 17, 54, 36, 72, 44, 113, 69, 145, 113, 204, 153, 302, 220, 394, 343, 541, 475, 771, 662, 1023, 968, 1398, 1314, 1929, 1822, 2566, 2565, 3440, 3446, 4677, 4688, 6187, 6407, 8216, 8544, 10975, 11436
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following.
                     (12): {{1,1,2}}
                    (6 6): {{1,2},{1,2}}
                    (8 4): {{1,1,1},{1,1}}
                    (9 3): {{2,2},{2}}
                   (10 2): {{1,3},{1}}
                  (4 4 4): {{1,1},{1,1},{1,1}}
                  (6 3 3): {{1,2},{2},{2}}
                  (6 4 2): {{1,2},{1,1},{1}}
                  (8 2 2): {{1,1,1},{1},{1}}
                (3 3 3 3): {{2},{2},{2},{2}}
                (4 4 2 2): {{1,1},{1,1},{1},{1}}
                (6 2 2 2): {{1,2},{1},{1},{1}}
              (4 2 2 2 2): {{1,1},{1},{1},{1},{1}}
            (2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}}
(1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[Union[#]]]===1&]],{n,30}]

Formula

For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018

Extensions

Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018

A305079 Number of connected components of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 5, 2, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 4, 1, 2, 1, 6, 1, 3, 1, 3, 2, 3, 1, 4, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

First differs from |A305052(n)| at a(169) = 1, A305052(169) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. If S is the integer partition with Heinz number n, a(n) is the number of connected components of G(S).

Examples

			The a(315) = 2 connected components of {2,2,3,4} are {{3},{2,2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[zsm[primeMS[n]]],{n,100}]
  • PARI
    zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2,#ys,if(ys[j]&&(1!=gcd(cs[i],ys[j])), listput(cs,ys[j]); ys[j] = 0)); i++); (ys); };
    A007814(n) = valuation(n,2);
    A000265(n) = (n/2^A007814(n));
    A305079(n) = if(!(n%2),A007814(n)+A305079(A000265(n)), my(cs = apply(p -> primepi(p),factor(n)[,1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Nov 10 2018

Formula

For all n, k > 0, we have a(2^n * k) = n + a(k).
For all x, y > 0, we have a(x * y) <= a(x) + a(y).
For x, y > 0 strongly coprime, we have a(x * y) = a(x) + a(y). Strongly coprime means every prime index of x is coprime to every prime index of y, where a prime index of n is a number m such that prime(m) divides n.
a(n) = A305501(A064989(n)) + A007814(n). - Antti Karttunen, Nov 10 2018

Extensions

Terms and Mathematica program corrected by Gus Wiseman, Nov 10 2018

A285573 Number of finite nonempty sets of pairwise indivisible divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 9, 2, 5, 5, 5, 2, 9, 2, 9, 5, 5, 2, 14, 3, 5, 4, 9, 2, 19, 2, 6, 5, 5, 5, 19, 2, 5, 5, 14, 2, 19, 2, 9, 9, 5, 2, 20, 3, 9, 5, 9, 2, 14, 5, 14, 5, 5, 2, 49, 2, 5, 9, 7, 5, 19, 2, 9, 5, 19, 2, 34, 2, 5, 9, 9, 5, 19, 2, 20, 5, 5, 2, 49, 5, 5, 5, 14, 2, 49, 5, 9, 5, 5, 5, 27, 2, 9, 9, 19
Offset: 1

Views

Author

Gus Wiseman, Apr 21 2017

Keywords

Comments

From Robert Israel, Apr 21 2017: (Start)
If n = p^k for prime p, a(n) = k+1.
If n = p^j*q^k for distinct primes p,q, a(n) = binomial(j+k+2,j+1)-1. (End)

Examples

			The a(12)=9 sets are: {1}, {2}, {3}, {4}, {6}, {12}, {2,3}, {3,4}, {4,6}.
		

Crossrefs

Programs

  • Maple
    g:= proc(S) local x, Sx; option remember;
       if nops(S) = 0 then return {{}} fi;
       x:= S[1];
       Sx:= subsop(1=NULL,S);
       procname(Sx) union map(t -> t union {x}, procname(remove(s -> s mod x = 0 or x mod s = 0, Sx)))
    end proc:
    f:= proc(n) local F,D;
      F:= ifactors(n)[2];
      D:= numtheory:-divisors(mul(ithprime(i)^F[i,2],i=1..nops(F)));
      nops(g(D)) - 1;
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 21 2017
  • Mathematica
    nn=50;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Rest[stableSets[Divisors[n],Divisible]]],{n,1,nn}]
Showing 1-10 of 148 results. Next