A327519 Number of factorizations of A305078(n - 1), the n-th connected number, into connected numbers > 1.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 1, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 3, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 2, 7, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 7, 2, 1
Offset: 1
Keywords
Examples
The a(190) = 8 factorizations of 585 together with the corresponding multiset partitions of {2,2,3,6}: (3*3*5*13) {{2},{2},{3},{6}} (3*3*65) {{2},{2},{3,6}} (3*5*39) {{2},{3},{2,6}} (3*195) {{2},{2,3,6}} (5*9*13) {{3},{2,2},{6}} (5*117) {{3},{2,2,6}} (9*65) {{2,2},{3,6}} (585) {{2,2,3,6}}
Links
Crossrefs
Programs
-
Mathematica
nn=100; zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; y=Select[Range[nn],Length[zsm[primeMS[#]]]==1&]; Table[Length[facsusing[y,n]],{n,y}]
Comments