A339113
Products of primes of squarefree semiprime index (A322551).
Original entry on oeis.org
1, 13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 169, 199, 233, 257, 269, 271, 293, 313, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 559, 577, 607, 611, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 841, 907, 929, 937
Offset: 1
The sequence of terms together with the corresponding multigraphs begins:
1: {} 233: {{2,7}} 487: {{2,11}}
13: {{1,2}} 257: {{3,5}} 491: {{1,15}}
29: {{1,3}} 269: {{2,8}} 499: {{3,8}}
43: {{1,4}} 271: {{1,10}} 559: {{1,2},{1,4}}
47: {{2,3}} 293: {{1,11}} 577: {{1,16}}
73: {{2,4}} 313: {{3,6}} 607: {{2,12}}
79: {{1,5}} 347: {{2,9}} 611: {{1,2},{2,3}}
101: {{1,6}} 373: {{1,12}} 631: {{3,9}}
137: {{2,5}} 377: {{1,2},{1,3}} 647: {{1,17}}
139: {{1,7}} 389: {{4,5}} 653: {{4,7}}
149: {{3,4}} 421: {{1,13}} 673: {{1,18}}
163: {{1,8}} 439: {{3,7}} 677: {{2,13}}
167: {{2,6}} 443: {{1,14}} 727: {{2,14}}
169: {{1,2},{1,2}} 449: {{2,10}} 751: {{4,8}}
199: {{1,9}} 467: {{4,6}} 757: {{1,19}}
These primes (of squarefree semiprime index) are listed by
A322551.
The strict (squarefree) case is
A309356.
The prime instead of squarefree semiprime version:
The nonprime instead of squarefree semiprime version:
The semiprime instead of squarefree semiprime version:
A002100 counts partitions into squarefree semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A339561 lists products of distinct squarefree semiprimes (ranking:
A339560).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
sqfsemiQ[n_]:=SquareFreeQ[n]&&PrimeOmega[n]==2;
Select[Range[1000],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!sqfsemiQ[PrimePi[p]]]&]
A339112
Products of primes of semiprime index (A106349).
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1
The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
1: 149: (34) 313: (36)
7: (11) 161: (11)(22) 329: (11)(23)
13: (12) 163: (18) 343: (11)(11)(11)
23: (22) 167: (26) 347: (29)
29: (13) 169: (12)(12) 373: (1C)
43: (14) 199: (19) 377: (12)(13)
47: (23) 203: (11)(13) 389: (45)
49: (11)(11) 227: (44) 421: (1D)
73: (24) 233: (27) 439: (37)
79: (15) 257: (35) 443: (1E)
91: (11)(12) 269: (28) 449: (2A)
97: (33) 271: (1A) 467: (46)
101: (16) 293: (1B) 487: (2B)
137: (25) 299: (12)(22) 491: (1F)
139: (17) 301: (11)(14) 499: (38)
These primes (of semiprime index) are listed by
A106349.
The strict (squarefree) case is
A340020.
The prime instead of semiprime version:
The nonprime instead of semiprime version:
The squarefree semiprime instead of semiprime version:
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of
A338916).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
N:= 1000: # for terms up to N
SP:= {}: p:= 1:
for i from 1 do
p:= nextprime(p);
if 2*p > N then break fi;
Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
SP:= SP union Q;
od:
SP:= sort(convert(SP,list)):
PSP:= map(ithprime,SP):
R:= {1}:
for p in PSP do
Rp:= {}:
for k from 1 while p^k <= N do
Rpk:= select(`<=`,R, N/p^k);
Rp:= Rp union map(`*`,Rpk, p^k);
od;
R:= R union Rp;
od:
sort(convert(R,list)); # Robert Israel, Nov 03 2024
-
semiQ[n_]:=PrimeOmega[n]==2;
Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]
A329557
Smallest MM-number of a set of n nonempty sets.
Original entry on oeis.org
1, 3, 15, 165, 2145, 36465, 1057485, 32782035, 1344063435, 57794727705, 2716352202135, 160264779925965, 10737740255039655, 783855038617894815, 61924548050813690385, 5139737488217536301955, 519113486309971166497455, 56583370007786857148222595, 6393920810879914857749153235
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
3: {{1}}
15: {{1},{2}}
165: {{1},{2},{3}}
2145: {{1},{2},{3},{1,2}}
36465: {{1},{2},{3},{1,2},{4}}
1057485: {{1},{2},{3},{1,2},{4},{1,3}}
MM-numbers of sets of sets are
A302494.
MM-numbers of sets of nonempty sets are
A329629.
The version allowing empty sets is
A329558.
The version without singletons is
A329554.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dae=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],1]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
-
a(n) = my(k=1); prod(i=1, n, until(issquarefree(k), k++); prime(k)); \\ Jinyuan Wang, Feb 23 2025
A371294
Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
4: {{2}}
8: {{1,1}}
16: {{3}}
32: {{1,2}}
40: {{1,1},{1,2}}
64: {{4}}
128: {{1,1,1}}
160: {{1,2},{1,1,1}}
256: {{2,2}}
288: {{1,2},{2,2}}
296: {{1,1},{1,2},{2,2}}
416: {{1,2},{1,1,1},{2,2}}
512: {{1,3}}
520: {{1,1},{1,3}}
544: {{1,2},{1,3}}
552: {{1,1},{1,2},{1,3}}
640: {{1,1,1},{1,3}}
672: {{1,2},{1,1,1},{1,3}}
800: {{1,2},{2,2},{1,3}}
808: {{1,1},{1,2},{2,2},{1,3}}
928: {{1,2},{1,1,1},{2,2},{1,3}}
For binary indices of binary indices we have
A326750, non-primitive
A326749.
For prime indices of prime indices we have
A329559, non-primitive
A305078.
For binary indices of prime indices we have
A371445, non-primitive
A325118.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A001222,
A051026,
A285572,
A303362,
A304713,
A305079,
A316476,
A319496,
A319719,
A326704,
A371446.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
A329552
Smallest MM-number of a connected set of n sets.
Original entry on oeis.org
1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
39: {{1},{1,2}}
195: {{1},{2},{1,2}}
5655: {{1},{2},{1,2},{1,3}}
62205: {{1},{2},{3},{1,2},{1,3}}
2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
MM-numbers of connected set-systems are
A328514.
The weight of the system with MM-number n is
A302242(n).
Maximum connected divisor is
A327076.
BII-numbers of connected sets of sets are
A326749.
The smallest BII-number of a connected set of n sets is
A329625(n).
Allowing edges to have repeated vertices gives
A329553.
Requiring the edges to form an antichain gives
A329555.
The smallest MM-number of a set of n nonempty sets is
A329557(n).
Cf.
A048143,
A056239,
A112798,
A302494,
A304714,
A304716,
A305079,
A322389,
A328513,
A329554,
A329556,
A329558.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]
A329555
Smallest MM-number of a clutter (connected antichain) of n distinct sets.
Original entry on oeis.org
1, 2, 377, 16211, 761917
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
Spanning cutters of distinct sets are counted by
A048143.
MM-numbers of connected weak-antichains are
A329559.
MM-numbers of sets of sets are
A302494.
The smallest BII-number of a clutter with n edges is
A329627.
Not requiring the edges to form an antichain gives
A329552.
Cf.
A056239,
A112798,
A302242,
A319837,
A320275,
A322113,
A327076,
A328514,
A329552,
A329558,
A329560,
A329561.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
A329558
Product of primes indexed by the first n squarefree numbers.
Original entry on oeis.org
1, 2, 6, 30, 330, 4290, 72930, 2114970, 65564070, 2688126870, 115589455410, 5432704404270, 320529559851930, 21475480510079310, 1567710077235789630, 123849096101627380770, 10279474976435072603910, 1038226972619942332994910, 113166740015573714296445190, 12787841621759829715498306470
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
6: {{},{1}}
30: {{},{1},{2}}
330: {{},{1},{2},{3}}
4290: {{},{1},{2},{3},{1,2}}
72930: {{},{1},{2},{3},{1,2},{4}}
2114970: {{},{1},{2},{3},{1,2},{4},{1,3}}
The smallest BII-number of a set of n sets is
A000225(n).
MM-numbers of sets of sets are
A302494.
The case without empty edges is
A329557.
The case without singletons is
A329556.
The case without empty edges or singletons is
A329554.
-
sqvs=Select[Range[30],SquareFreeQ];
Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]
A371445
Numbers whose distinct prime indices are binary carry-connected and have no binary containments.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 55, 59, 61, 64, 65, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 137, 139, 143, 145, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1
The terms together with their prime indices begin:
2: {1} 37: {12} 97: {25}
3: {2} 41: {13} 101: {26}
4: {1,1} 43: {14} 103: {27}
5: {3} 47: {15} 107: {28}
7: {4} 49: {4,4} 109: {29}
8: {1,1,1} 53: {16} 113: {30}
9: {2,2} 55: {3,5} 115: {3,9}
11: {5} 59: {17} 121: {5,5}
13: {6} 61: {18} 125: {3,3,3}
16: {1,1,1,1} 64: {1,1,1,1,1,1} 127: {31}
17: {7} 65: {3,6} 128: {1,1,1,1,1,1,1}
19: {8} 67: {19} 131: {32}
23: {9} 71: {20} 137: {33}
25: {3,3} 73: {21} 139: {34}
27: {2,2,2} 79: {22} 143: {5,6}
29: {10} 81: {2,2,2,2} 145: {3,10}
31: {11} 83: {23} 149: {35}
32: {1,1,1,1,1} 89: {24} 151: {36}
Contains all powers of primes
A000961 except 1.
Partitions of this type are counted by
A371446.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
Cf.
A019565,
A056239,
A112798,
A304713,
A304716,
A305079,
A305148,
A325097,
A325105,
A325107,
A325119,
A371452.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Select[Range[100],stableQ[bpe/@prix[#],SubsetQ] && Length[csm[bpe/@prix[#]]]==1&]
A329554
Smallest MM-number of a set of n nonempty sets with no singletons.
Original entry on oeis.org
1, 13, 377, 16211, 761917, 55619941, 4393975339, 443791509239, 50148440544007, 6870336354528959, 954976753279525301, 142291536238649269849, 23193520406899830985387, 3873317907952271774559629, 701070541339361191195292849, 139513037726532877047863276951
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
13: {{1,2}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
The smallest BII-number of a set of n sets is
A000225(n).
BII-numbers of set-systems with no singletons are
A326781.
MM-numbers of sets of nonempty sets are the odd terms of
A302494.
MM-numbers of multisets of nonempty non-singleton sets are
A320629.
The version with empty edges is
A329556.
The version with singletons is
A329557.
The version with empty edges and singletons is
A329558.
-
sqvs=Select[Range[2,30],SquareFreeQ[#]&&!PrimeQ[#]&];
Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]
A329556
Smallest MM-number of a set of n sets with no singletons.
Original entry on oeis.org
1, 2, 26, 754, 32422, 1523834
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
26: {{},{1,2}}
754: {{},{1,2},{1,3}}
32422: {{},{1,2},{1,3},{1,4}}
1523834: {{},{1,2},{1,3},{1,4},{2,3}}
MM-numbers of sets of sets with no singletons are
A329630.
The case without empty edges is
A329554.
MM-numbers of sets of sets are
A302494.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],_?PrimeQ]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
Showing 1-10 of 20 results.
Comments