A339620 Heinz numbers of non-multigraphical partitions of even numbers.
3, 7, 10, 13, 19, 21, 22, 28, 29, 34, 37, 39, 43, 46, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 88, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 155, 156, 159, 163, 166, 171, 172, 173
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 3: {2} 53: {16} 94: {1,15} 7: {4} 55: {3,5} 101: {26} 10: {1,3} 57: {2,8} 102: {1,2,7} 13: {6} 61: {18} 107: {28} 19: {8} 62: {1,11} 111: {2,12} 21: {2,4} 66: {1,2,5} 113: {30} 22: {1,5} 71: {20} 115: {3,9} 28: {1,1,4} 76: {1,1,8} 116: {1,1,10} 29: {10} 79: {22} 117: {2,2,6} 34: {1,7} 82: {1,13} 118: {1,17} 37: {12} 85: {3,7} 129: {2,14} 39: {2,6} 87: {2,10} 130: {1,3,6} 43: {14} 88: {1,1,1,5} 131: {32} 46: {1,9} 89: {24} 133: {4,8} 52: {1,1,6} 91: {4,6} 134: {1,19} For example, a complete lists of all loop-multigraphs with degrees (5,2,1) is: {{1,1},{1,1},{1,2},{2,3}} {{1,1},{1,1},{1,3},{2,2}} {{1,1},{1,2},{1,2},{1,3}}, but since none of these is a multigraph (they have loops), the Heinz number 66 belongs to the sequence.
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A000070 counts these partitions.
A300061 is a superset.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Select[Subsets[Union[m],{2}],MemberQ[#,m[[1]]]&]}]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[100],EvenQ[Length[nrmptn[#]]]&&prpts[nrmptn[#]]=={}&]
Comments