A029889
Number of graphical partitions (degree-vectors for graphs with n vertices, allowing self-loops which count as degree 1; or possible ordered row-sum vectors for a symmetric 0-1 matrix).
Original entry on oeis.org
1, 2, 5, 14, 43, 140, 476, 1664, 5939, 21518, 78876, 291784, 1087441, 4077662, 15369327, 58184110, 221104527, 842990294, 3223339023
Offset: 0
torsten.sillke(AT)lhsystems.com
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 14 sorted degree sequences:
() (0) (0,0) (0,0,0)
(1) (1,0) (1,0,0)
(1,1) (1,1,0)
(2,1) (2,1,0)
(2,2) (2,2,0)
(1,1,1)
(2,1,1)
(3,1,1)
(2,2,1)
(3,2,1)
(2,2,2)
(3,2,2)
(3,3,2)
(3,3,3)
For example, the half-loop-graph
{{1,3},{3}}
has degrees (1,0,2), so (2,1,0) is counted under a(3). The half-loop-graphs
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
both have degrees (3,2,2), so (3,2,2) is counted under a(3).
(End)
- R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
Non-half-loop-graphical partitions are conjectured to be counted by
A321728.
The covering case (no zeros) is
A339843.
A004251 counts degree sequences of graphs, with covering case
A095268.
A320663 counts unlabeled multiset partitions into singletons/pairs.
A339659 is a triangle counting graphical partitions.
A339844 counts degree sequences of loop-graphs, with covering case
A339845.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{1,2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
A340019
MM-numbers of labeled graphs with half-loops, without isolated vertices.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 55: {{2},{3}} 137: {{2,5}}
3: {{1}} 59: {{7}} 139: {{1,7}}
5: {{2}} 65: {{2},{1,2}} 141: {{1},{2,3}}
11: {{3}} 67: {{8}} 143: {{3},{1,2}}
13: {{1,2}} 73: {{2,4}} 145: {{2},{1,3}}
15: {{1},{2}} 79: {{1,5}} 149: {{3,4}}
17: {{4}} 83: {{9}} 155: {{2},{5}}
29: {{1,3}} 85: {{2},{4}} 157: {{12}}
31: {{5}} 87: {{1},{1,3}} 163: {{1,8}}
33: {{1},{3}} 93: {{1},{5}} 165: {{1},{2},{3}}
39: {{1},{1,2}} 101: {{1,6}} 167: {{2,6}}
41: {{6}} 109: {{10}} 177: {{1},{7}}
43: {{1,4}} 123: {{1},{6}} 179: {{13}}
47: {{2,3}} 127: {{11}} 187: {{3},{4}}
51: {{1},{4}} 129: {{1},{1,4}} 191: {{14}}
The version with full loops covering an initial interval is
A320461.
The case covering an initial interval is
A340018.
The version with full loops is
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A340020
MM-numbers of labeled graphs with loops, without isolated vertices.
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 553, 559, 577, 607, 611, 631, 647, 653, 661, 667, 673, 677
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 161: {{1,1},{2,2}} 347: {{2,9}}
7: {{1,1}} 163: {{1,8}} 373: {{1,12}}
13: {{1,2}} 167: {{2,6}} 377: {{1,2},{1,3}}
23: {{2,2}} 199: {{1,9}} 389: {{4,5}}
29: {{1,3}} 203: {{1,1},{1,3}} 421: {{1,13}}
43: {{1,4}} 227: {{4,4}} 439: {{3,7}}
47: {{2,3}} 233: {{2,7}} 443: {{1,14}}
73: {{2,4}} 257: {{3,5}} 449: {{2,10}}
79: {{1,5}} 269: {{2,8}} 467: {{4,6}}
91: {{1,1},{1,2}} 271: {{1,10}} 487: {{2,11}}
97: {{3,3}} 293: {{1,11}} 491: {{1,15}}
101: {{1,6}} 299: {{1,2},{2,2}} 499: {{3,8}}
137: {{2,5}} 301: {{1,1},{1,4}} 511: {{1,1},{2,4}}
139: {{1,7}} 313: {{3,6}} 553: {{1,1},{1,5}}
149: {{3,4}} 329: {{1,1},{2,3}} 559: {{1,2},{1,4}}
The case with only one edge is
A106349.
The case covering an initial interval is
A320461.
The version allowing multiple edges is
A339112.
The half-loop version covering an initial interval is
A340018.
A006450 lists primes of prime index.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeOmega[PrimePi[p]]!=2]&]
A321728
Number of integer partitions of n whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition.
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 37, 50
Offset: 0
The a(2) = 1 through a(9) = 14 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the non-half-loop-graphical partitions up to n = 9:
(2) (3) (4) (5) (6) (7) (8) (9)
(31) (32) (33) (43) (44) (54)
(41) (42) (52) (53) (63)
(51) (61) (62) (72)
(411) (331) (71) (81)
(421) (422) (432)
(511) (431) (441)
(521) (522)
(611) (531)
(5111) (621)
(711)
(4311)
(5211)
(6111)
For example, a complete list of all half/full-loop-graphs with degrees y = (4,3,1) is the following:
{{1,1},{1,2},{1,3},{2,2}}
{{1},{2},{1,1},{1,2},{2,3}}
{{1},{2},{1,1},{1,3},{2,2}}
{{1},{3},{1,1},{1,2},{2,2}}
None of these is a half-loop-graph, as they have full loops (x,x), so y is counted under a(8).
The complement is counted by
A321729.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are
A029889 or
A339843 (covering).
The version for full loops is
A339655.
A320663/
A339888 count unlabeled multiset partitions into singletons/pairs.
A339659 counts graphical partitions of 2n into k parts.
Cf.
A006129,
A025065,
A062740,
A095268,
A096373,
A167171,
A320461,
A338915,
A339842,
A339844,
A339845.
-
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
Table[Length[Select[IntegerPartitions[n],Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]=={}&]],{n,8}]
A321729
Number of integer partitions of n whose Young diagram can be partitioned into vertical sections of the same sizes as the parts of the original partition.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 28, 40, 51
Offset: 0
The a(1) = 1 through a(8) = 12 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the half-loop-graphical partitions up to n = 8:
(1) (11) (21) (22) (221) (222) (322) (332)
(111) (211) (311) (321) (2221) (2222)
(1111) (2111) (2211) (3211) (3221)
(11111) (3111) (4111) (3311)
(21111) (22111) (4211)
(111111) (31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
For example, the half-loop-graphs
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(7).
The complement is counted by
A321728.
Cf.
A000110,
A000258,
A000700,
A000701,
A006052,
A007016,
A008277,
A046682,
A319056,
A319616,
A321730,
A321737,
A321738.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are
A029889 or
A339843 (covering).
The version for full loops is
A339656.
A320663/
A339888 count unlabeled multiset partitions into singletons/pairs.
A339659 is a triangle counting graphical partitions by length.
Cf.
A006129,
A025065,
A062740,
A095268,
A096373,
A167171,
A320461,
A338915,
A339842,
A339844,
A339845.
-
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
Table[Length[Select[IntegerPartitions[n],Length[Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]]>0&]],{n,8}]
A339843
Number of distinct sorted degree sequences among all n-vertex half-loop-graphs without isolated vertices.
Original entry on oeis.org
1, 1, 3, 9, 29, 97, 336, 1188, 4275, 15579, 57358, 212908, 795657, 2990221, 11291665, 42814783, 162920417, 621885767, 2380348729
Offset: 0
The a(0) = 1 through a(3) = 9 sorted degree sequences:
() (1) (1,1) (1,1,1)
(2,1) (2,1,1)
(2,2) (2,2,1)
(2,2,2)
(3,1,1)
(3,2,1)
(3,2,2)
(3,3,2)
(3,3,3)
For example, the half-loop-graphs
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(3).
See link for additional cross references.
The non-covering version (it allows isolated vertices) is
A029889.
The same partitions counted by sum are conjectured to be
A321729.
A320663/
A339888 count unlabeled multiset partitions into singletons/pairs.
A339659 counts graphical partitions of 2n into k parts.
Cf.
A062740,
A096373,
A167171,
A320461,
A320893,
A320921,
A320923,
A338915,
A339560,
A339841,
A339842.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&]]],{n,0,5}]
Showing 1-6 of 6 results.
Comments