cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A339656 Number of loop-graphical integer partitions of 2n.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 49, 84, 140, 229, 367, 577, 895, 1368, 2064, 3080, 4547, 6642, 9627, 13825, 19704, 27868, 39164, 54656, 75832, 104584
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2020

Keywords

Comments

An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. See A339658 for the Heinz numbers, and A339655 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the unordered prime signature of n is loop-graphical.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)    (2,2)      (3,3)          (3,3,2)
      (1,1)  (3,1)      (2,2,2)        (4,2,2)
             (2,1,1)    (3,2,1)        (4,3,1)
             (1,1,1,1)  (4,1,1)        (2,2,2,2)
                        (2,2,1,1)      (3,2,2,1)
                        (3,1,1,1)      (3,3,1,1)
                        (2,1,1,1,1)    (4,2,1,1)
                        (1,1,1,1,1,1)  (5,1,1,1)
                                       (2,2,2,1,1)
                                       (3,2,1,1,1)
                                       (4,1,1,1,1)
                                       (2,2,1,1,1,1)
                                       (3,1,1,1,1,1)
                                       (2,1,1,1,1,1,1)
                                       (1,1,1,1,1,1,1,1)
For example, there are four possible loop-graphs with degrees y = (2,2,1,1), namely
  {{1,1},{2,2},{3,4}}
  {{1,1},{2,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
  {{1,3},{1,4},{2,2}},
so y is counted under a(3). On the other hand, there are two possible loop-multigraphs with degrees z = (4,2), namely
  {{1,1},{1,1},{2,2}}
  {{1,1},{1,2},{1,2}},
but neither of these is a loop-graph, so z is not counted under a(3).
		

Crossrefs

A339658 ranks these partitions.
A001358 lists semiprimes, with squarefree case A006881.
A006125 counts labeled graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A062740 counts labeled connected loop-graphs.
A320461 ranks normal loop-graphs.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A322661 counts covering loop-graphs.
A339845 counts the same partitions by length, or A339844 with zeros.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 [this sequence] counts loop-graphical partitions (A339658).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@spsbin[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]!={}&]],{n,0,5}]

Formula

A058696(n) = a(n) + A339655(n).

Extensions

a(8)-a(25) from Andrew Howroyd, Jan 10 2024

A029889 Number of graphical partitions (degree-vectors for graphs with n vertices, allowing self-loops which count as degree 1; or possible ordered row-sum vectors for a symmetric 0-1 matrix).

Original entry on oeis.org

1, 2, 5, 14, 43, 140, 476, 1664, 5939, 21518, 78876, 291784, 1087441, 4077662, 15369327, 58184110, 221104527, 842990294, 3223339023
Offset: 0

Views

Author

torsten.sillke(AT)lhsystems.com

Keywords

Comments

I call loops of degree one half-loops, so these are half-loop-graphs or graphs with half-loops. - Gus Wiseman, Dec 31 2020

Examples

			From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 14 sorted degree sequences:
  ()  (0)  (0,0)  (0,0,0)
      (1)  (1,0)  (1,0,0)
           (1,1)  (1,1,0)
           (2,1)  (2,1,0)
           (2,2)  (2,2,0)
                  (1,1,1)
                  (2,1,1)
                  (3,1,1)
                  (2,2,1)
                  (3,2,1)
                  (2,2,2)
                  (3,2,2)
                  (3,3,2)
                  (3,3,3)
For example, the half-loop-graph
  {{1,3},{3}}
has degrees (1,0,2), so (2,1,0) is counted under a(3). The half-loop-graphs
  {{1},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3}}
both have degrees (3,2,2), so (3,2,2) is counted under a(3).
(End)
		

References

  • R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.

Crossrefs

Non-half-loop-graphical partitions are conjectured to be counted by A321728.
The covering case (no zeros) is A339843.
MM-numbers of half-loop-graphs are given by A340018 and A340019.
A004251 counts degree sequences of graphs, with covering case A095268.
A320663 counts unlabeled multiset partitions into singletons/pairs.
A339659 is a triangle counting graphical partitions.
A339844 counts degree sequences of loop-graphs, with covering case A339845.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{1,2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

Calculated using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(n) = A029890(n) + A029891(n). - Andrew Howroyd, Apr 18 2021

Extensions

a(0) = 1 prepended by Gus Wiseman, Dec 31 2020

A339657 Heinz numbers of non-loop-graphical partitions of even numbers.

Original entry on oeis.org

7, 13, 19, 21, 22, 29, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 66, 71, 76, 79, 82, 85, 87, 89, 91, 94, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 148, 151, 154, 155, 156, 159, 163, 165, 166, 169, 171
Offset: 1

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Equals the image of A181819 applied to the set of terms of A320892.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. Loop-graphical partitions are counted by A339656, with Heinz numbers A339658.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
      7: {4}         57: {2,8}      107: {28}
     13: {6}         61: {18}       111: {2,12}
     19: {8}         62: {1,11}     113: {30}
     21: {2,4}       66: {1,2,5}    115: {3,9}
     22: {1,5}       71: {20}       116: {1,1,10}
     29: {10}        76: {1,1,8}    117: {2,2,6}
     34: {1,7}       79: {22}       118: {1,17}
     37: {12}        82: {1,13}     121: {5,5}
     39: {2,6}       85: {3,7}      129: {2,14}
     43: {14}        87: {2,10}     130: {1,3,6}
     46: {1,9}       89: {24}       131: {32}
     49: {4,4}       91: {4,6}      133: {4,8}
     52: {1,1,6}     94: {1,15}     134: {1,19}
     53: {16}       101: {26}       136: {1,1,1,7}
     55: {3,5}      102: {1,2,7}    138: {1,2,9}
For example, the three loop-multigraphs with degrees y = (5,2,1) are:
  {{1,1},{1,1},{1,2},{2,3}}
  {{1,1},{1,1},{1,3},{2,2}}
  {{1,1},{1,2},{1,2},{1,3}},
but since none of these is a loop-graph (they have multiple edges), the Heinz number 66 is in the sequence.
		

Crossrefs

A320892 has these prime shadows (see A181819).
A321728 is conjectured to be the version for half-loops {x} instead of loops {x,x}.
A339655 counts these partitions.
A339658 ranks the complement, counted by A339656.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A101048 counts partitions into semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339844 counts loop-graphical partitions by length.
factorizations of n into distinct primes or squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 counts non-loop-graphical partitions of 2n (A339657 [this sequence]).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[50],EvenQ[Length[nrmptn[#]]]&&Select[mpsbin[nrmptn[#]],UnsameQ@@#&]=={}&]

Formula

A339659 Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 2, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 4, 9, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 2, 11, 15, 17, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2020

Keywords

Comments

Conjecture: The column sums 1, 0, 1, 2, 7, 20, 67, ... are given by A304787.
An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph. Graphical partitions are counted by A000569.

Examples

			Triangle begins:
  1
  0 0 1
  0 0 0 1 1
  0 0 0 1 2 1 1
  0 0 0 0 2 3 2 1 1
  0 0 0 0 1 4 5 3 2 1 1
  0 0 0 0 1 4 7 7 5 3 2 1 1
For example, row n = 5 counts the following partitions:
  3322  22222  222211  2221111  22111111  211111111  1111111111
        32221  322111  3211111  31111111
        33211  331111  4111111
        42211  421111
               511111
		

Crossrefs

A000569 gives the row sums.
A004250 is the central column.
A005408 gives the row lengths.
A008284/A072233 is the version counting all partitions.
A259873 is the left half of the triangle.
A309356 is a universal embedding.
A027187 counts partitions of even length.
A339559 = partitions that cannot be partitioned into distinct strict pairs.
A339560 = partitions that can be partitioned into distinct strict pairs.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A147878 counts connected multigraphical partitions (A320925).
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).

Programs

  • Mathematica
    prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]

A339740 Non-products of distinct primes or squarefree semiprimes.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

Differs from A293243 and A212164 in having 1080, with prime indices {1,1,1,2,2,2,3} and factorization into distinct squarefree numbers 2*3*6*30.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}             80: {1,1,1,1,3}
      8: {1,1,1}           81: {2,2,2,2}
      9: {2,2}             88: {1,1,1,5}
     16: {1,1,1,1}         96: {1,1,1,1,1,2}
     24: {1,1,1,2}        104: {1,1,1,6}
     25: {3,3}            108: {1,1,2,2,2}
     27: {2,2,2}          112: {1,1,1,1,4}
     32: {1,1,1,1,1}      121: {5,5}
     40: {1,1,1,3}        125: {3,3,3}
     48: {1,1,1,1,2}      128: {1,1,1,1,1,1,1}
     49: {4,4}            135: {2,2,2,3}
     54: {1,2,2,2}        136: {1,1,1,7}
     56: {1,1,1,4}        144: {1,1,1,1,2,2}
     64: {1,1,1,1,1,1}    152: {1,1,1,8}
     72: {1,1,1,2,2}      160: {1,1,1,1,1,3}
For example, a complete list of strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72); but since none of these consists of only primes or squarefree semiprimes, 72 is in the sequence.
		

Crossrefs

A013929 allows only primes.
A320894 does not allow primes (but omega is assumed even).
A339741 is the complement.
A339742 has zeros at these positions.
A339840 allows squares of primes.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339617 counts non-graphical partitions of 2n (A339618).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 counts all of even length (A028260).
- A096373/A339737 cannot be partitioned into strict pairs (A320891).
- A338915/A339662 cannot be partitioned into distinct pairs (A320892).
- A339559/A339564 cannot be partitioned into distinct strict pairs (A320894).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqps[#]=={}&]

A321729 Number of integer partitions of n whose Young diagram can be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 28, 40, 51
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A046682 at a(11) = 28, A046682(11) = 29.
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3
Conjecture: a(n) is the number of half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(1) = 1 through a(8) = 12 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the half-loop-graphical partitions up to n = 8:
  (1)  (11)  (21)   (22)    (221)    (222)     (322)      (332)
             (111)  (211)   (311)    (321)     (2221)     (2222)
                    (1111)  (2111)   (2211)    (3211)     (3221)
                            (11111)  (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, the half-loop-graphs
  {{1},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(7).
		

Crossrefs

The complement is counted by A321728.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339656.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 is a triangle counting graphical partitions by length.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Length[Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]]>0&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is nonzero, where m is monomial symmetric functions and e is elementary symmetric functions.
a(n) = A000041(n) - A321728(n).

A321737 Number of ways to partition the Young diagram of an integer partition of n into vertical sections.

Original entry on oeis.org

1, 1, 3, 9, 37, 152, 780, 3965, 23460, 141471, 944217, 6445643, 48075092, 364921557, 2974423953, 24847873439, 219611194148, 1987556951714, 18930298888792, 184244039718755, 1874490999743203, 19510832177784098, 210941659716920257, 2331530519337226199, 26692555830628617358
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(4) = 37 partitions into vertical sections of integer partitions of 4:
  1 2 3 4
.
  1 2 3   1 2 3   1 2 3   1 2 3
  4       3       2       1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3 4   2 3   3 2   1 3   1 2   3 1   2 1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3     3     2     3     2     1     1     3     2     1
  4     3     3     2     2     3     2     1     1     1
.
  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
  2   2   2   2   2   1   1   2   2   2   2   1   1   2   1
  3   3   2   3   2   2   2   1   1   3   2   1   2   1   1
  4   3   3   2   2   3   2   3   2   1   1   2   1   1   1
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
    Table[Sum[Length[spsu[ptnverts[y],ptnpos[y]]],{y,IntegerPartitions[n]}],{n,6}]

Extensions

a(11)-a(24) from Ludovic Schwob, Aug 28 2023

A339840 Numbers that cannot be factored into distinct primes or semiprimes.

Original entry on oeis.org

16, 32, 64, 81, 96, 128, 160, 192, 224, 243, 256, 288, 320, 352, 384, 416, 448, 486, 512, 544, 576, 608, 625, 640, 704, 729, 736, 768, 800, 832, 864, 896, 928, 960, 972, 992, 1024, 1088, 1152, 1184, 1215, 1216, 1280, 1312, 1344, 1376, 1408, 1458, 1472, 1504
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The sequence of terms together with their prime indices begins:
    16: {1,1,1,1}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    96: {1,1,1,1,1,2}
   128: {1,1,1,1,1,1,1}
   160: {1,1,1,1,1,3}
   192: {1,1,1,1,1,1,2}
   224: {1,1,1,1,1,4}
   243: {2,2,2,2,2}
   256: {1,1,1,1,1,1,1,1}
   288: {1,1,1,1,1,2,2}
   320: {1,1,1,1,1,1,3}
   352: {1,1,1,1,1,5}
   384: {1,1,1,1,1,1,1,2}
   416: {1,1,1,1,1,6}
   448: {1,1,1,1,1,1,4}
   486: {1,2,2,2,2,2}
For example, a complete list of all factorizations of 192 into primes or semiprimes is:
  (2*2*2*2*2*2*3)
  (2*2*2*2*2*6)
  (2*2*2*2*3*4)
  (2*2*2*4*6)
  (2*2*3*4*4)
  (2*4*4*6)
  (3*4*4*4)
Since none of these is strict, 192 is in the sequence.
		

Crossrefs

Allowing only primes gives A013929.
Removing all squares of primes gives A339740.
These are the positions of zeros in A339839.
The complement is A339889.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A338915 cannot be partitioned into distinct pairs (A320892).
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339742 into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n, ranked by A339618.
- A339655 counts non-loop-graphical partitions of 2n (A339657).

Programs

  • Maple
    filter:= proc(n)
      g(map(t -> t[2], ifactors(n)[2]))
    end proc;
    g:= proc(L) option remember; local x,i,j,t,s,Cons,R;
      if nops(L) = 1 then return L[1] > 3
      elif nops(L) = 2 then return max(L) > 4
      fi;
      Cons:= {seq(x[i] + x[i,i] + add(x[j,i], j=1..i-1)
         + add(x[i,j],j=i+1..nops(L)) = L[i], i=1..nops(L))};
      R:= traperror(Optimization:-LPSolve(0,Cons, assume=binary));
      type(R,string)
    end proc:
    select(filter, [$2..2000]); # Robert Israel, Dec 28 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],UnsameQ@@#&&SubsetQ[{1,2},PrimeOmega/@#]&]=={}&]

A321730 Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 79, 303, 1294, 5934, 29385, 156232, 884893
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(5) = 23 partitions of Young diagrams of integer partitions of 5 into vertical sections of the same sizes as the parts of the original partition, shown as colorings by positive integers:
  1 2 3   1 2 3   1 2 3
  1       2       3
  1       2       3
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  1 2   1 3   1 3   2 1   3 1   3 1   2 3   3 2   2 3   3 2
  3     2     3     3     2     3     1     1     3     3
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  1     3     3     2     3     3     3     3     3
  3     1     4     3     2     4     3     4     4
  4     4     1     4     4     2     4     3     4
.
  1
  2
  3
  4
  5
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Sum[Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]],{y,IntegerPartitions[n]}],{n,5}]

A321731 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 5, 0, 0, 0, 1, 0, 10, 0, 3, 0, 0, 0, 9, 0, 0, 8, 0, 0, 12, 0, 1, 0, 0, 0, 34, 0, 0, 0, 10, 0, 0, 0, 0, 24, 0, 0, 14, 0, 0, 0, 0, 0, 68, 0, 4, 0, 0, 0, 78, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 86, 0, 0, 36, 0, 0, 0, 0, 22, 60, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(30) = 12 partitions of the Young diagram of (321) into vertical sections of sizes (321), shown as colorings by positive integers:
  1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3
  1 2     1 3     2 1     3 1     1 2     1 3
  1       1       1       1       2       3
.
  1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3
  2 1     3 1     2 3     3 2     2 3     3 2
  2       3       2       2       3       3
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[With[{y=Reverse[primeMS[n]]},Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]]],{n,30}]
Showing 1-10 of 10 results.