A339560 Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges.
1, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 13, 17, 22, 28, 39, 48, 62, 81, 101, 127, 167, 202, 253, 318, 395, 486, 608, 736, 906, 1113, 1353, 1637, 2011, 2409, 2922, 3510, 4227, 5060, 6089, 7242, 8661, 10306, 12251, 14503, 17236, 20345, 24045, 28334, 33374, 39223, 46076
Offset: 0
Keywords
Examples
The a(3) = 1 through a(11) = 13 partitions (A = 10): (21) (31) (32) (42) (43) (53) (54) (64) (65) (41) (51) (52) (62) (63) (73) (74) (61) (71) (72) (82) (83) (3211) (3221) (81) (91) (92) (4211) (3321) (4321) (A1) (4221) (5221) (4322) (4311) (5311) (4331) (5211) (6211) (4421) (5321) (5411) (6221) (6311) (7211) For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways: {{1,2},{1,3},{3,4}} {{1,3},{1,4},{2,3}}, so y is counted under a(14).
Links
- Eric Weisstein's World of Mathematics, Graphical partition.
Crossrefs
A338916 allows equal pairs (x,x).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
Programs
-
Mathematica
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}]
Extensions
More terms from Jinyuan Wang, Feb 14 2025
Comments