A239455
Number of Look-and-Say partitions of n; see Comments.
Original entry on oeis.org
0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0
The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
These include all Wilf partitions, counted by
A098859, ranked by
A130091.
These partitions are listed by
A239454 in graded reverse-lex order.
The non-Wilf case is counted by
A351592.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
Counting words with all distinct run-lengths:
Cf.
A000041,
A008284,
A047966,
A182857,
A225485,
A297770,
A304660,
A305563,
A329746,
A351201,
A351202,
A351291.
-
LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
Flatten[t](*A239454,sequence*)
Map[Length[LS[#]] &, Range[25]](*A239455*)
(* Peter J. C. Moses, Mar 18 2014 *)
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)
A351293
Number of non-Look-and-Say partitions of n. Number of integer partitions of n such that there is no way to choose a disjoint strict integer partition of each multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 28, 44, 56, 80, 111, 148, 192, 264, 335, 447, 575, 743, 937, 1213, 1513, 1924, 2396, 3011, 3715, 4646, 5687, 7040, 8600, 10556, 12804, 15650, 18897, 22930, 27593, 33296, 39884, 47921, 57168, 68360, 81295, 96807, 114685
Offset: 0
The a(3) = 1 through a(9) = 14 partitions:
(21) (31) (32) (42) (43) (53) (54)
(41) (51) (52) (62) (63)
(321) (61) (71) (72)
(2211) (421) (431) (81)
(3211) (521) (432)
(3221) (531)
(3311) (621)
(4211) (3321)
(32111) (4221)
(4311)
(5211)
(32211)
(42111)
(321111)
These are all non-Wilf partitions (counted by
A336866, ranked by
A130092).
These partitions appear to be ranked by
A351295.
Non-Wilf partitions in the complement are counted by
A351592.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A098859 = Wilf partitions (distinct multiplicities), ranked by
A130091.
A181819 = Heinz number of the prime signature of n (prime shadow).
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths, for all runs
A351013.
A351017 = binary words with all distinct run-lengths, for all runs
A351016.
A351292 = patterns with all distinct run-lengths, for all runs
A351200.
Cf.
A000041,
A008284,
A047966,
A182857,
A225485,
A238130,
A297770,
A304660,
A305563,
A329740,
A329746,
A351202,
A351291.
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]==0&]],{n,0,15}] (* Gus Wiseman, Aug 13 2025 *)
A004250
Number of partitions of n into 3 or more parts.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1
a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
(222) (2222) (22222) (222222) (2222222)
(3221) (32221) (322221) (3222221)
(33211) (332211) (3322211)
(42211) (333111) (3332111)
(422211) (4222211)
(432111) (4322111)
(522111) (4331111)
(4421111)
(5222111)
(5321111)
(6221111)
(End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- N. Metropolis and P. R. Stein, The enumeration of graphical partitions, Europ. J. Combin., 1 (1980), 139-1532.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics. Spider Graph
- Wikipedia, Starlike tree
- Index entries for sequences related to graphical partitions
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
-
with(combinat);
for i from 1 to 15 do pik(i,3) od;
pik:= proc(n::integer, k::integer)
# Thomas Wieder, Jan 30 2007
local i, Liste, Result;
if k > n or n < 0 or k < 1 then
return fail
end if;
Result := 0;
for i from k to n do
Liste:= PartitionList(n,i);
#print(Liste);
Result := Result + nops(Liste);
end do;
return Result;
end proc;
PartitionList := proc (n, k)
# Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
# "East Side West Side,..." University of Pennsylvania, USA, 2002.
# Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
# Calculates the partition of n into k parts.
# E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
local East, West;
if n < 1 or k < 1 or n < k then
RETURN([])
elif n = 1 then
RETURN([[1]])
else if n < 2 or k < 2 or n < k then
West := []
else
West := map(proc (x) options operator, arrow;
[op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
if k <= n-k then
East := map(proc (y) options operator, arrow;
map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
else East := [] end if;
RETURN([op(West), op(East)])
end if;
end proc;
# Thomas Wieder, Feb 01 2007
ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
-
Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
-
a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */
A004251
Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).
Original entry on oeis.org
1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0
For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
() (0) (0,0) (0,0,0) (0,0,0,0)
(1,1) (0,1,1) (0,0,1,1)
(1,1,2) (0,1,1,2)
(2,2,2) (0,2,2,2)
(1,1,1,1)
(1,1,1,3)
(1,1,2,2)
(1,2,2,3)
(2,2,2,2)
(2,2,3,3)
(3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
- R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (Terms 1 through 31 were computed by various authors; terms 32 through 34 by Axel Kohnert and Wang Kai; terms 35 to 79 by Wang Kai)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995), #R11.
- B. A. Chat, S. Pirzada, and A. Iványi, Recognition of split-graphic sequences, Acta Universitatis Sapientiae, Informatica, 6, 2 (2014) 252-286.
- D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, arXiv:1305.1155 [cs.DM], 2013.
- A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2) (2011), 230-268.
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012), 260-288. - From _N. J. A. Sloane_, Feb 15 2013
- A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012), 130-183. - From _N. J. A. Sloane_, Dec 22 2012 [Disclaimer: I am not one of the authors of this paper; I was unpleasantly surprised to find my name on it, as explained here. - _Jon E. Schoenfield_, Nov 26 2016]
- Wang Kai, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms.
- P. W. Mills, R. P. Rundle, V. M. Dwyer, T. Tilma, and S. J. Devitt, A proposal for an efficient quantum algorithm solving the graph isomorphism problem, arXiv 1711.09842, 2017.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Degree Sequence.
- Eric Weisstein's World of Mathematics, Graphic Sequence.
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
- Index entries for sequences related to graphical partitions
Counting the positive partitions by sum gives
A000569, ranked by
A320922.
The covering case (no zeros) is
A095268.
Non-graphical partitions are counted by
A339617 and ranked by
A339618.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(30) and a(31) corrected by
Wang Kai, Jun 05 2016
A339560
Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 13, 17, 22, 28, 39, 48, 62, 81, 101, 127, 167, 202, 253, 318, 395, 486, 608, 736, 906, 1113, 1353, 1637, 2011, 2409, 2922, 3510, 4227, 5060, 6089, 7242, 8661, 10306, 12251, 14503, 17236, 20345, 24045, 28334, 33374, 39223, 46076
Offset: 0
The a(3) = 1 through a(11) = 13 partitions (A = 10):
(21) (31) (32) (42) (43) (53) (54) (64) (65)
(41) (51) (52) (62) (63) (73) (74)
(61) (71) (72) (82) (83)
(3211) (3221) (81) (91) (92)
(4211) (3321) (4321) (A1)
(4221) (5221) (4322)
(4311) (5311) (4331)
(5211) (6211) (4421)
(5321)
(5411)
(6221)
(6311)
(7211)
For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways:
{{1,2},{1,3},{3,4}}
{{1,3},{1,4},{2,3}},
so y is counted under a(14).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
-
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}]
A339561
Products of distinct squarefree semiprimes.
Original entry on oeis.org
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 55: {3,5} 91: {4,6}
6: {1,2} 57: {2,8} 93: {2,11}
10: {1,3} 58: {1,10} 94: {1,15}
14: {1,4} 60: {1,1,2,3} 95: {3,8}
15: {2,3} 62: {1,11} 106: {1,16}
21: {2,4} 65: {3,6} 111: {2,12}
22: {1,5} 69: {2,9} 115: {3,9}
26: {1,6} 74: {1,12} 118: {1,17}
33: {2,5} 77: {4,5} 119: {4,7}
34: {1,7} 82: {1,13} 122: {1,18}
35: {3,4} 84: {1,1,2,4} 123: {2,13}
38: {1,8} 85: {3,7} 126: {1,2,2,4}
39: {2,6} 86: {1,14} 129: {2,14}
46: {1,9} 87: {2,10} 132: {1,1,2,5}
51: {2,7} 90: {1,2,2,3} 133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
(6*10*15*77)
(6*10*21*55)
(6*10*33*35)
(6*14*15*55)
(6*15*22*35)
(10*14*15*33)
(10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
A309356 is a kind of universal embedding.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
-
A339560 can be partitioned into distinct strict pairs (
A339561 [this sequence]).
Cf.
A001055,
A001221,
A002100,
A007717,
A030229,
A112798,
A320655,
A320893,
A338899,
A338903,
A339563,
A339659.
-
sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
Select[Range[100],sqs[#]!={}&]
A338914
Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0
The a(3) = 1 through a(10) = 11 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]
A338915
Number of integer partitions of n that have an even number of parts and cannot be partitioned into distinct pairs of not necessarily distinct parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 1, 1, 4, 2, 6, 6, 12, 12, 20, 22, 38, 42, 60, 73, 101, 124, 164, 203, 266, 319, 415, 507, 649, 786, 983, 1198, 1499, 1797, 2234, 2673, 3303, 3952, 4826, 5753, 6999, 8330, 10051, 11943, 14357, 16956, 20322, 23997, 28568, 33657, 39897, 46879
Offset: 0
The a(7) = 1 through a(12) = 12 partitions:
211111 2222 411111 222211 222221 3333
221111 21111111 331111 611111 222222
311111 511111 22211111 441111
11111111 22111111 32111111 711111
31111111 41111111 22221111
1111111111 2111111111 32211111
33111111
42111111
51111111
2211111111
3111111111
111111111111
For example, the partition y = (3,2,2,1,1,1,1,1) can be partitioned into pairs in just three ways:
{{1,1},{1,1},{1,2},{2,3}}
{{1,1},{1,1},{1,3},{2,2}}
{{1,1},{1,2},{1,2},{1,3}}
None of these is strict, so y is counted under a(12).
The Heinz numbers of these partitions are
A320892.
The complement in even-length partitions is
A338916.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
smcs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[smcs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&smcs[Times@@Prime/@#]=={}&]],{n,0,10}]
A339618
Heinz numbers of non-graphical integer partitions of even numbers.
Original entry on oeis.org
3, 7, 9, 10, 13, 19, 21, 22, 25, 28, 29, 30, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 75, 76, 79, 82, 84, 85, 87, 88, 89, 91, 94, 100, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146, 147
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 43: {14} 79: {22}
7: {4} 46: {1,9} 82: {1,13}
9: {2,2} 49: {4,4} 84: {1,1,2,4}
10: {1,3} 52: {1,1,6} 85: {3,7}
13: {6} 53: {16} 87: {2,10}
19: {8} 55: {3,5} 88: {1,1,1,5}
21: {2,4} 57: {2,8} 89: {24}
22: {1,5} 61: {18} 91: {4,6}
25: {3,3} 62: {1,11} 94: {1,15}
28: {1,1,4} 63: {2,2,4} 100: {1,1,3,3}
29: {10} 66: {1,2,5} 101: {26}
30: {1,2,3} 70: {1,3,4} 102: {1,2,7}
34: {1,7} 71: {20} 107: {28}
37: {12} 75: {2,3,3} 111: {2,12}
39: {2,6} 76: {1,1,8} 113: {30}
For example, there are three possible multigraphs with degrees (1,1,3,3):
{{1,2},{1,2},{1,2},{3,4}}
{{1,2},{1,2},{1,3},{2,4}}
{{1,2},{1,2},{1,4},{2,3}}.
Since none of these is a graph, the Heinz number 100 belongs to the sequence.
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
-
A339617 counts non-graphical partitions of 2n (
A339618 [this sequence]).
The following count partitions of even length and give their Heinz numbers:
-
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],EvenQ[Length[nrmptn[#]]]&&strs[Times@@Prime/@nrmptn[#]]=={}&]
A338916
Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 5, 6, 8, 12, 16, 21, 28, 37, 49, 64, 80, 104, 135, 169, 216, 268, 341, 420, 527, 654, 809, 991, 1218, 1488, 1828, 2213, 2687, 3262, 3934, 4754, 5702, 6849, 8200, 9819, 11693, 13937, 16562, 19659, 23262, 27577, 32493, 38341, 45112, 53059, 62265
Offset: 0
The a(2) = 1 through a(10) = 16 partitions:
(11) (21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(2111) (51) (61) (62) (72) (73)
(2211) (2221) (71) (81) (82)
(3111) (3211) (3221) (3222) (91)
(4111) (3311) (3321) (3322)
(4211) (4221) (3331)
(5111) (4311) (4222)
(5211) (4321)
(6111) (4411)
(222111) (5221)
(321111) (5311)
(6211)
(7111)
(322111)
(421111)
For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]
Showing 1-10 of 23 results.
Comments