A000088
Number of simple graphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864, 165091172592, 50502031367952, 29054155657235488, 31426485969804308768, 64001015704527557894928, 245935864153532932683719776, 1787577725145611700547878190848, 24637809253125004524383007491432768
Offset: 0
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 430.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 519.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 214.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 240.
- Thomas Boyer-Kassem, Conor Mayo-Wilson, Scientific Collaboration and Collective Knowledge: New Essays, New York, Oxford University Press, 2018, see page 47.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 54.
- Lupanov, O. B. Asymptotic estimates of the number of graphs with n edges. (Russian) Dokl. Akad. Nauk SSSR 126 1959 498--500. MR0109796 (22 #681).
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Keith M. Briggs, Table of n, a(n) for n = 0..87 (From link below)
- R. Absil and H. Mélot, Digenes: genetic algorithms to discover conjectures about directed and undirected graphs, arXiv preprint arXiv:1304.7993 [cs.DM], 2013.
- Natalie Arkus, Vinothan N. Manoharan and Michael P. Brenner. Deriving Finite Sphere Packings, arXiv:1011.5412 [cond-mat.soft], Nov 24, 2010. (See Table 1.)
- Leonid Bedratyuk and Anna Bedratyuk, A new formula for the generating function of the numbers of simple graphs, Comptes rendus de l'Académie Bulgare des Sciences, Tome 69, No 3, 2016, p.259-268.
- Benjamin A. Blumer, Michael S. Underwood and David L. Feder, Single-qubit unitary gates by graph scattering, arXiv:1111.5032 [quant-ph], 2011.
- Keith M. Briggs, Combinatorial Graph Theory [Gives first 140 terms]
- Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur and Hadrien Melot, House of Graphs: a database of interesting graphs, arXiv preprint arXiv:1204.3549 [math.CO], 2012.
- P. Butler and R. W. Robinson, On the computer calculation of the number of nonseparable graphs, pp. 191 - 208 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp. [Annotated scanned copy]
- P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102.
- P. J. Cameron, Some sequences of integers, in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- P. J. Cameron and C. R. Johnson, The number of equivalence patterns of symmetric sign patterns, Discr. Math., 306 (2006), 3074-3077.
- Gi-Sang Cheon, Jinha Kim, Minki Kim and Sergey Kitaev, On k-11-representable graphs, arXiv:1803.01055 [math.CO], 2018.
- CombOS - Combinatorial Object Server, Generate graphs
- Karen M. Daehli, Sarah A Obead, Hsuan-Yin Lin, and Eirik Rosnes, Improved Capacity Outer Bound for Private Quadratic Monomial Computation, arXiv:2401.06125 [cs.IR], 2024.
- R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- J. P. Dolch, Names of Hamiltonian graphs, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 259-271. (Annotated scanned copy of 3 pages)
- Peter Dukes, Notes for Math 422: Enumeration and Ramsey Theory, University of Victoria BC Canada (2019). See page 36.
- D. S. Dummit, E. P. Dummit and H. Kisilevsky, Characterizations of quadratic, cubic, and quartic residue matrices, arXiv preprint arXiv:1512.06480 [math.NT], 2015.
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Mareike Fischer, Michelle Galla, Lina Herbst, Yangjing Long, and Kristina Wicke, Non-binary treebased unrooted phylogenetic networks and their relations to binary and rooted ones, arXiv:1810.06853 [q-bio.PE], 2018.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 105.
- E. Friedman, Illustration of small graphs
- Harald Fripertinger, Graphs
- Scott Garrabrant and Igor Pak, Pattern Avoidance is Not P-Recursive, preprint, 2015.
- Lee M. Gunderson and Gecia Bravo-Hermsdorff, Introducing Graph Cumulants: What is the Variance of Your Social Network?, arXiv:2002.03959 [math.ST], 2020.
- P. Hegarty, On the notion of balance in social network analysis, arXiv preprint arXiv:1212.4303 [cs.SI], 2012.
- S. Hougardy, Home Page
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- Richard Hua and Michael J. Dinneen, Improved QUBO Formulation of the Graph Isomorphism Problem, SN Computer Science (2020) Vol. 1, No. 19.
- A. Itzhakov and M. Codish, Breaking Symmetries in Graph Search with Canonizing Sets, arXiv preprint arXiv:1511.08205 [cs.AI], 2015-2016.
- Dan-Marian Joiţa and Lorentz Jäntschi, Extending the Characteristic Polynomial for Characterization of C_20 Fullerene Congeners, Mathematics (2017), 5(4), 84.
- Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes
- Maksim Karev, The space of framed chord diagrams as a Hopf module, arXiv preprint arXiv:1404.0026 [math.GT], 2014.
- J. M. Larson, Cheating Because They Can: Social Networks and Norm Violators, 2014. See Footnote 11.
- Steffen Lauritzen, Alessandro Rinaldo and Kayvan Sadeghi, On Exchangeability in Network Models, arXiv:1709.03885 [math.ST], 2017.
- O. B. Lupanov, On asymptotic estimates of the number of graphs and networks with n edges, Problems of Cybernetics [in Russian], Moscow 4 (1960): 5-21.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
- B. D. McKay, Maple program (used to redirect to here).
- B. D. McKay, Maple program [Cached copy, with permission]
- B. D. McKay, Simple graphs
- A. Milicevic and N. Trinajstic, Combinatorial Enumeration in Chemistry, Chem. Modell., Vol. 4, (2006), pp. 405-469.
- Angelo Monti and Blerina Sinaimeri, Effects of graph operations on star pairwise compatibility graphs, arXiv:2410.16023 [cs.DM], 2024. See p. 16.
- W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.
- M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- E. M. Palmer, Letter to N. J. A. Sloane, no date
- Marko Riedel, Nonisomorphic graphs.
- Marko Riedel, Compact Maple code for cycle index, sequence values and ordinary generating function by the number of edges.
- R. W. Robinson, Enumeration of non-separable graphs, J. Combin. Theory 9 (1970), 327-356.
- Sage, Common Graphs (Graph Generators)
- S. S. Skiena, Generating graphs
- N. J. A. Sloane, Illustration of initial terms
- Quico Spaen, Christopher Thraves Caro and Mark Velednitsky, The Dimension of Valid Distance Drawings of Signed Graphs, Discrete & Computational Geometry (2019), 1-11.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Overview of the 17 Parts (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 1
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 2
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 3
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 4
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 5
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 6
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 7
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 8
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 9
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 10
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 11
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 12
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 13
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 14
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 15
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 16
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17
- J. M. Tangen and N. J. A. Sloane, Correspondence, 1976-1976
- James Turner and William H. Kautz, A survey of progress in graph theory in the Soviet Union SIAM Rev. 12 1970 suppl. iv+68 pp. MR0268074 (42 #2973). See p. 18.
- S. Uijlen and B. Westerbaan, A Kochen-Specker system has at least 22 vectors, arXiv preprint arXiv:1412.8544 [cs.DM], 2014.
- Mark Velednitsky, New Algorithms for Three Combinatorial Optimization Problems on Graphs, Ph. D. Dissertation, University of California, Berkeley (2020).
- Eric Weisstein's World of Mathematics, Simple Graph
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Degree Sequence
- E. M. Wright, The number of graphs on many unlabelled nodes, Mathematische Annalen, December 1969, Volume 183, Issue 4, 250-253
- E. M. Wright, The number of unlabelled graphs with many nodes and edges Bull. Amer. Math. Soc. Volume 78, Number 6 (1972), 1032-1034.
- Chris Ying, Enumerating Unique Computational Graphs via an Iterative Graph Invariant, arXiv:1902.06192 [cs.DM], 2019.
- Index entries for "core" sequences
-
# To produce all graphs on 4 nodes, for example:
with(GraphTheory):
L:=[NonIsomorphicGraphs](4,output=graphs,outputform=adjacency): # N. J. A. Sloane, Oct 07 2013
seq(GraphTheory[NonIsomorphicGraphs](n,output=count),n=1..10); # Juergen Will, Jan 02 2018
# alternative Maple program:
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
+add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
end:
a:= n-> b(n$2, []):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 14 2019
-
Needs["Combinatorica`"]
Table[NumberOfGraphs[n], {n, 0, 19}] (* Geoffrey Critzer, Mar 12 2011 *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
b[n_, i_, l_] := If[n==0 || i==1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1 )/2]+Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
a[n_] := b[n, n, {}];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 03 2019, after Alois P. Heinz *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
-
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A000088(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024
-
def a(n):
return len(list(graphs(n)))
# Ralf Stephan, May 30 2014
Harary gives an incorrect value for a(8); compare
A007149
A051037
5-smooth numbers, i.e., numbers whose prime divisors are all <= 5.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405
Offset: 1
From _Gus Wiseman_, May 21 2021: (Start)
The sequence of terms together with their prime indices begins:
1: {} 25: {3,3}
2: {1} 27: {2,2,2}
3: {2} 30: {1,2,3}
4: {1,1} 32: {1,1,1,1,1}
5: {3} 36: {1,1,2,2}
6: {1,2} 40: {1,1,1,3}
8: {1,1,1} 45: {2,2,3}
9: {2,2} 48: {1,1,1,1,2}
10: {1,3} 50: {1,3,3}
12: {1,1,2} 54: {1,2,2,2}
15: {2,3} 60: {1,1,2,3}
16: {1,1,1,1} 64: {1,1,1,1,1,1}
18: {1,2,2} 72: {1,1,1,2,2}
20: {1,1,3} 75: {2,3,3}
24: {1,1,1,2} 80: {1,1,1,1,3}
(End)
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Benoit Cloitre, Plot of abs(f(n)-s(n)) vs its mean values (blue) and vs loglog(n) (red).
- M. J. Dominus, Infinite Lists in Perl.
- Deborah Howard and Malcolm Longair, Harmonic Proportion and Palladio's "Quattro Libri", Journal of the Society of Architectural Historians (1982) 41 (2): 116-143.
- Vaclav Kotesovec, Plot of a(n) / (exp((6*log(2)*log(3)*log(5)*n)^(1/3))/sqrt(30)) for n = 1..1200000
- Rosetta Code, A collection of computer codes to compute 5-smooth numbers.
- Raphael Schumacher, The Formula for the Distribution of the 3-Smooth Numbers, 5-Smooth, 7-Smooth and all other Smooth Numbers, arXiv:1608.06928 [math.NT], 2016.
- Sci.math, Ugly numbers.
- Carl Veller, Martin A. Nowak and Charles C. Davis, Extended flowering intervals of bamboos evolved by discrete multiplication, Ecology Letters, 18 (2015), 653-659.
- Eric Weisstein's World of Mathematics, Smooth Number.
- Wikipedia, Regular number.
- Wikipedia, Talk:Regular number. Includes a discussion of the name.
- Wikipedia, Størmer's theorem.
The partitions with these Heinz numbers are counted by
A001399.
Requiring the sum of prime indices to be even gives
A344297.
-
import Data.Set (singleton, deleteFindMin, insert)
a051037 n = a051037_list !! (n-1)
a051037_list = f $ singleton 1 where
f s = y : f (insert (5 * y) $ insert (3 * y) $ insert (2 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
-
[n: n in [1..500] | PrimeDivisors(n) subset [2,3,5]]; // Bruno Berselli, Sep 24 2012
-
A051037 := proc(n)
option remember;
local a;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
numtheory[factorset](a) minus {2, 3,5 } ;
if % = {} then
return a;
end if;
end do:
end if;
end proc:
seq(A051037(n),n=1..100) ; # R. J. Mathar, Nov 05 2017
-
mx = 405; Sort@ Flatten@ Table[ 2^a*3^b*5^c, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}] (* Or *)
Select[ Range@ 405, Last@ Map[First, FactorInteger@ #] < 7 &] (* Robert G. Wilson v *)
With[{nn=10},Select[Union[Times@@@Flatten[Table[Tuples[{2,3,5},n],{n,0,nn}],1]],#<=2^nn&]] (* Harvey P. Dale, Feb 28 2022 *)
-
test(n)= {m=n; forprime(p=2,5, while(m%p==0,m=m/p)); return(m==1)}
for(n=1,500,if(test(n),print1(n",")))
-
a(n)=local(m); if(n<1,0,n=a(n-1); until(if(m=n, forprime(p=2,5, while(m%p==0,m/=p)); m==1),n++); n)
-
list(lim)=my(v=List(),s,t); for(i=0,logint(lim\=1,5), t=5^i; for(j=0,logint(lim\t,3), s=t*3^j; while(s<=lim, listput(v,s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Sep 21 2011; updated Sep 19 2016
-
smooth(P:vec,lim)={ my(v=List([1]),nxt=vector(#P,i,1),indx,t);
while(1, t=vecmin(vector(#P,i,v[nxt[i]]*P[i]),&indx);
if(t>lim,break); if(t>v[#v],listput(v,t)); nxt[indx]++);
Vec(v)
};
smooth([2,3,5], 1e4) \\ Charles R Greathouse IV, Dec 03 2013
-
is_A051037(n)=n<7||vecmax(factor(n,6)[, 1])<7 \\ M. F. Hasler, Jan 16 2015
-
def isok(n):
while n & 1 == 0: n >>= 1
while n % 3 == 0: n //= 3
while n % 5 == 0: n //= 5
return n == 1 # Darío Clavijo, Dec 30 2022
-
from sympy import integer_log
def A051037(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x):
c = n+x
for i in range(integer_log(x,5)[0]+1):
for j in range(integer_log(y:=x//5**i,3)[0]+1):
c -= (y//3**j).bit_length()
return c
return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
-
# faster for initial segment of sequence
import heapq
from itertools import islice
def A051037gen(): # generator of terms
v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
while True:
v = heapq.heappop(h)
if v != oldv:
yield v
oldv = v
for p in psmooth_primes:
heapq.heappush(h, v*p)
print(list(islice(A051037gen(), 65))) # Michael S. Branicky, Sep 17 2024
A000569
Number of graphical partitions of 2n.
Original entry on oeis.org
1, 2, 5, 9, 17, 31, 54, 90, 151, 244, 387, 607, 933, 1420, 2136, 3173, 4657, 6799, 9803, 14048, 19956, 28179, 39467, 54996, 76104, 104802, 143481, 195485, 264941, 357635, 480408, 642723, 856398, 1136715, 1503172, 1980785
Offset: 1
a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 17 graphical partitions:
(11) (211) (222) (2222) (3322)
(1111) (2211) (3221) (22222)
(3111) (22211) (32221)
(21111) (32111) (33211)
(111111) (41111) (42211)
(221111) (222211)
(311111) (322111)
(2111111) (331111)
(11111111) (421111)
(511111)
(2221111)
(3211111)
(4111111)
(22111111)
(31111111)
(211111111)
(1111111111)
(End)
- T. D. Noe, Table of n, a(n) for n = 1..860. [Terms 1 through 110 were computed by Tiffany M. Barnes and Carla D. Savage; terms 111 through 585 were computed by Axel Kohnert; terms 586 to 860 by Wang Kai, Jun 05 2016; a typo of a(547) in Number of Graphical Partitions is corrected by Wang Kai, Aug 03 2016]
- Tiffany M. Barnes and Carla D. Savage, Efficient generation of graphical partitions Discrete Appl. Math. 78 (1997), no. 1-3, 17-26.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995).
- K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
- P. Erdős and T. Gallai, Graphs with a given degree of vertices, Mat. Lapok, 11 (1960), 264-274.
- P. Erdős and L. B. Richmond, On graphical partitions Combinatorica 13 (1993), no. 1, 57-63.
- Axel Kohnert, Dominance Order and Graphical Partitions, Electronic J. Combinatorics, 11 (2004).
- Gerard Sierksma and Han Hoogeveen, Seven criteria for integer sequences being graphic, J. Graph Theory 15 (1991), no. 2, 223-231.
- Eric Weisstein's World of Mathematics, Graphical partition.
- Gus Wiseman, Simple graphs realizing each of the a(6) = 31 graphical partitions of 12.
- Index entries for sequences related to graphical partitions
Cf.
A000070,
A000219,
A004250,
A004251,
A007717,
A025065,
A029889,
A095268,
A096373,
A147878,
A209816,
A320911,
A320921,
A320922.
-
<< MathWorld`Graphs`
Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
(* second program *)
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)
A004251
Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).
Original entry on oeis.org
1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0
For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
() (0) (0,0) (0,0,0) (0,0,0,0)
(1,1) (0,1,1) (0,0,1,1)
(1,1,2) (0,1,1,2)
(2,2,2) (0,2,2,2)
(1,1,1,1)
(1,1,1,3)
(1,1,2,2)
(1,2,2,3)
(2,2,2,2)
(2,2,3,3)
(3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
- R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (Terms 1 through 31 were computed by various authors; terms 32 through 34 by Axel Kohnert and Wang Kai; terms 35 to 79 by Wang Kai)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995), #R11.
- B. A. Chat, S. Pirzada, and A. Iványi, Recognition of split-graphic sequences, Acta Universitatis Sapientiae, Informatica, 6, 2 (2014) 252-286.
- D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, arXiv:1305.1155 [cs.DM], 2013.
- A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2) (2011), 230-268.
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012), 260-288. - From _N. J. A. Sloane_, Feb 15 2013
- A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012), 130-183. - From _N. J. A. Sloane_, Dec 22 2012 [Disclaimer: I am not one of the authors of this paper; I was unpleasantly surprised to find my name on it, as explained here. - _Jon E. Schoenfield_, Nov 26 2016]
- Wang Kai, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms.
- P. W. Mills, R. P. Rundle, V. M. Dwyer, T. Tilma, and S. J. Devitt, A proposal for an efficient quantum algorithm solving the graph isomorphism problem, arXiv 1711.09842, 2017.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Degree Sequence.
- Eric Weisstein's World of Mathematics, Graphic Sequence.
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
- Index entries for sequences related to graphical partitions
Counting the positive partitions by sum gives
A000569, ranked by
A320922.
The covering case (no zeros) is
A095268.
Non-graphical partitions are counted by
A339617 and ranked by
A339618.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(30) and a(31) corrected by
Wang Kai, Jun 05 2016
A029889
Number of graphical partitions (degree-vectors for graphs with n vertices, allowing self-loops which count as degree 1; or possible ordered row-sum vectors for a symmetric 0-1 matrix).
Original entry on oeis.org
1, 2, 5, 14, 43, 140, 476, 1664, 5939, 21518, 78876, 291784, 1087441, 4077662, 15369327, 58184110, 221104527, 842990294, 3223339023
Offset: 0
torsten.sillke(AT)lhsystems.com
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 14 sorted degree sequences:
() (0) (0,0) (0,0,0)
(1) (1,0) (1,0,0)
(1,1) (1,1,0)
(2,1) (2,1,0)
(2,2) (2,2,0)
(1,1,1)
(2,1,1)
(3,1,1)
(2,2,1)
(3,2,1)
(2,2,2)
(3,2,2)
(3,3,2)
(3,3,3)
For example, the half-loop-graph
{{1,3},{3}}
has degrees (1,0,2), so (2,1,0) is counted under a(3). The half-loop-graphs
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
both have degrees (3,2,2), so (3,2,2) is counted under a(3).
(End)
- R. A. Brualdi, H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
Non-half-loop-graphical partitions are conjectured to be counted by
A321728.
The covering case (no zeros) is
A339843.
A004251 counts degree sequences of graphs, with covering case
A095268.
A320663 counts unlabeled multiset partitions into singletons/pairs.
A339659 is a triangle counting graphical partitions.
A339844 counts degree sequences of loop-graphs, with covering case
A339845.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{1,2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
A339659
Irregular triangle read by rows where T(n,k) is the number of graphical partitions of 2n into k parts, 0 <= k <= 2n.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 2, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 1, 4, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 4, 9, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 2, 11, 15, 17, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Triangle begins:
1
0 0 1
0 0 0 1 1
0 0 0 1 2 1 1
0 0 0 0 2 3 2 1 1
0 0 0 0 1 4 5 3 2 1 1
0 0 0 0 1 4 7 7 5 3 2 1 1
For example, row n = 5 counts the following partitions:
3322 22222 222211 2221111 22111111 211111111 1111111111
32221 322111 3211111 31111111
33211 331111 4111111
42211 421111
511111
A259873 is the left half of the triangle.
A027187 counts partitions of even length.
A339559 = partitions that cannot be partitioned into distinct strict pairs.
A339560 = partitions that can be partitioned into distinct strict pairs.
The following count vertex-degree partitions and give their Heinz numbers:
-
A321728 is conjectured to count non-half-loop-graphical partitions of n.
Cf.
A000219,
A002100,
A006881,
A007717,
A025065,
A320656,
A320894,
A338914,
A338916,
A339561,
A339661.
-
prpts[m_]:=If[Length[m]==0,{{}},Join@@Table[Prepend[#,ipr]&/@prpts[Fold[DeleteCases[#1,#2,{1},1]&,m,ipr]],{ipr,Subsets[Union[m],{2}]}]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Length[Union[#]]==k&&Select[prpts[#],UnsameQ@@#&]!={}&]],{n,0,5},{k,0,2*n}]
A095268
Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.
Original entry on oeis.org
1, 0, 1, 2, 7, 20, 71, 240, 871, 3148, 11655, 43332, 162769, 614198, 2330537, 8875768, 33924859, 130038230, 499753855, 1924912894, 7429160296, 28723877732, 111236423288, 431403470222, 1675316535350, 6513837679610, 25354842100894, 98794053269694, 385312558571890, 1504105116253904, 5876236938019298, 22974847399695092
Offset: 0
a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot):
() . (1,1) (2,1,1) (1,1,1,1)
(2,2,2) (2,2,1,1)
(2,2,2,2)
(3,1,1,1)
(3,2,2,1)
(3,3,2,2)
(3,3,3,3)
For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4).
(End)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (terms 0 through 79 from Kai Wang)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
- A. Iványi, L. Lucz, T. Matuszka and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapiantiae, Inform.4 (2) (2012) 260-288.
- A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, Parallel enumeration of degree sequences of simple graphs II, Acta Universitatis Sapientiae, Informatica, Volume 5, Issue 2 (Dec 2013).
- A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapiantiae, Inform. 3 (2) (2011) 230-268.
- A. Kohnert, Number of different degree sequences of a graph with no isolated vertices, 2016.
- Frank Ruskey, Alley CATs in Search of Good Homes
- Kai Wang, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms. But a(30) and a(31) are different.
- Eric Weisstein's World of Mathematics, Degree sequence
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
Counting the same partitions by sum gives
A000569.
Allowing isolated nodes gives
A004251.
Graphical partitions are ranked by
A320922.
A339659 is a triangle counting graphical partitions.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
a(30)-a(31) from articles by
Kai Wang and Axel Kohnert, Apr 15 2016
a(0) = 1 and a(1) = 0 prepended by
Gus Wiseman, Dec 31 2020
A058399
Triangle of partial row sums of partition triangle A008284.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1, 11, 10, 7, 4, 2, 1, 15, 14, 11, 7, 4, 2, 1, 22, 21, 17, 12, 7, 4, 2, 1, 30, 29, 25, 18, 12, 7, 4, 2, 1, 42, 41, 36, 28, 19, 12, 7, 4, 2, 1, 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1, 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1, 101, 100, 94, 80, 62
Offset: 1
From _Omar E. Pol_, Mar 10 2012: (Start)
Triangle begins:
1;
2, 1;
3, 2, 1;
5, 4, 2, 1;
7, 6, 4, 2, 1;
11, 10, 7, 4, 2, 1;
15, 14, 11, 7, 4, 2, 1;
22, 21, 17, 12, 7, 4, 2, 1;
30, 29, 25, 18, 12, 7, 4, 2, 1;
42, 41, 36, 28, 19, 12, 7, 4, 2, 1;
56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1;
77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1;
(End)
-
b:= proc(n, k) option remember;
`if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k)))
end:
T:= (n, m)-> b(n,n) -b(n,m-1):
seq (seq (T(n, m), m=1..n), n=1..15); # Alois P. Heinz, Apr 20 2012
-
t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
A130131
Number of n-lobsters.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 23, 47, 105, 231, 532, 1224, 2872, 6739, 15955, 37776, 89779, 213381, 507949, 1209184, 2880382, 6861351, 16348887, 38955354, 92831577, 221219963, 527197861, 1256385522, 2994200524, 7135736613, 17005929485, 40528629737, 96588403995, 230190847410
Offset: 1
a(10) = 105 = A000055(10) - 1 because all trees with 10 vertices are lobsters except this one:
o-o-o
/
o-o-o-o
\
o-o-o
Also, all trees with 10 vertices are linear (all vertices of degree >2 belong to a single path) except this one:
o o
\ /
o
|
o
/ \
o o
/ \ / \
o o o o
-
eta = QPochhammer;
s[n_] := With[{ox = O[x]^n}, x^2 ((1/eta[x + ox] - 1/(1 - x))^2/(1 - x/eta[x + ox]) + (1/eta[x^2 + ox] - 1/(1 - x^2))(1 + x/eta[x + ox])/(1 - x^2/eta[x^2 + ox]))/2 + x/eta[x + ox] - x^3/((1 - x)^2*(1 + x))];
CoefficientList[s[32], x] // Rest (* Jean-François Alcover, Nov 17 2020, after Andrew Howroyd *)
-
s(n)={my(ox=O(x^n)); x^2*((1/eta(x+ox)-1/(1-x))^2/(1-x/eta(x+ox)) + (1/eta(x^2+ox)-1/(1-x^2))*(1+x/eta(x+ox))/(1-x^2/eta(x^2+ox)))/2 + x/eta(x+ox) - x^3/((1-x)^2*(1+x))}
Vec(s(30)) \\ Andrew Howroyd, Nov 02 2017
A349801
Number of integer partitions of n into three or more parts or into two equal parts.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 18, 25, 37, 50, 71, 94, 128, 168, 223, 288, 376, 480, 617, 781, 991, 1243, 1563, 1945, 2423, 2996, 3704, 4550, 5589, 6826, 8333, 10126, 12293, 14865, 17959, 21618, 25996, 31165, 37318, 44562, 53153, 63239, 75153, 89111, 105535, 124730
Offset: 0
The a(2) = 1 through a(7) = 11 partitions:
(11) (111) (22) (221) (33) (322)
(211) (311) (222) (331)
(1111) (2111) (321) (421)
(11111) (411) (511)
(2211) (2221)
(3111) (3211)
(21111) (4111)
(111111) (22111)
(31111)
(211111)
(1111111)
A096441 counts weakly alternating 0-appended partitions.
A345165 counts partitions w/ no alternating permutation, complement
A345170.
Cf.
A000070,
A001700,
A002865,
A117298,
A117989,
A102726,
A128761,
A345162,
A345163,
A345166,
A349798.
-
Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,x_}|{,,__}]&]],{n,0,10}]
Showing 1-10 of 38 results.
Comments