A329557
Smallest MM-number of a set of n nonempty sets.
Original entry on oeis.org
1, 3, 15, 165, 2145, 36465, 1057485, 32782035, 1344063435, 57794727705, 2716352202135, 160264779925965, 10737740255039655, 783855038617894815, 61924548050813690385, 5139737488217536301955, 519113486309971166497455, 56583370007786857148222595, 6393920810879914857749153235
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
3: {{1}}
15: {{1},{2}}
165: {{1},{2},{3}}
2145: {{1},{2},{3},{1,2}}
36465: {{1},{2},{3},{1,2},{4}}
1057485: {{1},{2},{3},{1,2},{4},{1,3}}
MM-numbers of sets of sets are
A302494.
MM-numbers of sets of nonempty sets are
A329629.
The version allowing empty sets is
A329558.
The version without singletons is
A329554.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dae=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],1]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
-
a(n) = my(k=1); prod(i=1, n, until(issquarefree(k), k++); prime(k)); \\ Jinyuan Wang, Feb 23 2025
A329552
Smallest MM-number of a connected set of n sets.
Original entry on oeis.org
1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
39: {{1},{1,2}}
195: {{1},{2},{1,2}}
5655: {{1},{2},{1,2},{1,3}}
62205: {{1},{2},{3},{1,2},{1,3}}
2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
MM-numbers of connected set-systems are
A328514.
The weight of the system with MM-number n is
A302242(n).
Maximum connected divisor is
A327076.
BII-numbers of connected sets of sets are
A326749.
The smallest BII-number of a connected set of n sets is
A329625(n).
Allowing edges to have repeated vertices gives
A329553.
Requiring the edges to form an antichain gives
A329555.
The smallest MM-number of a set of n nonempty sets is
A329557(n).
Cf.
A048143,
A056239,
A112798,
A302494,
A304714,
A304716,
A305079,
A322389,
A328513,
A329554,
A329556,
A329558.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]
A329555
Smallest MM-number of a clutter (connected antichain) of n distinct sets.
Original entry on oeis.org
1, 2, 377, 16211, 761917
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
Spanning cutters of distinct sets are counted by
A048143.
MM-numbers of connected weak-antichains are
A329559.
MM-numbers of sets of sets are
A302494.
The smallest BII-number of a clutter with n edges is
A329627.
Not requiring the edges to form an antichain gives
A329552.
Cf.
A056239,
A112798,
A302242,
A319837,
A320275,
A322113,
A327076,
A328514,
A329552,
A329558,
A329560,
A329561.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
A329554
Smallest MM-number of a set of n nonempty sets with no singletons.
Original entry on oeis.org
1, 13, 377, 16211, 761917, 55619941, 4393975339, 443791509239, 50148440544007, 6870336354528959, 954976753279525301, 142291536238649269849, 23193520406899830985387, 3873317907952271774559629, 701070541339361191195292849, 139513037726532877047863276951
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
13: {{1,2}}
377: {{1,2},{1,3}}
16211: {{1,2},{1,3},{1,4}}
761917: {{1,2},{1,3},{1,4},{2,3}}
The smallest BII-number of a set of n sets is
A000225(n).
BII-numbers of set-systems with no singletons are
A326781.
MM-numbers of sets of nonempty sets are the odd terms of
A302494.
MM-numbers of multisets of nonempty non-singleton sets are
A320629.
The version with empty edges is
A329556.
The version with singletons is
A329557.
The version with empty edges and singletons is
A329558.
-
sqvs=Select[Range[2,30],SquareFreeQ[#]&&!PrimeQ[#]&];
Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]
A329556
Smallest MM-number of a set of n sets with no singletons.
Original entry on oeis.org
1, 2, 26, 754, 32422, 1523834
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
26: {{},{1,2}}
754: {{},{1,2},{1,3}}
32422: {{},{1,2},{1,3},{1,4}}
1523834: {{},{1,2},{1,3},{1,4},{2,3}}
MM-numbers of sets of sets with no singletons are
A329630.
The case without empty edges is
A329554.
MM-numbers of sets of sets are
A302494.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&FreeQ[primeMS[#],_?PrimeQ]&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
A329553
Smallest MM-number of a connected set of n multisets.
Original entry on oeis.org
1, 2, 21, 195, 1365, 25935, 435435
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
21: {{1},{1,1}}
195: {{1},{2},{1,2}}
1365: {{1},{2},{1,1},{1,2}}
25935: {{1},{2},{1,1},{1,2},{1,1,1}}
435435: {{1},{2},{1,1},{3},{1,2},{1,3}}
MM-numbers of connected sets of sets are
A328514.
The weight of the system with MM-number n is
A302242(n).
Maximum connected divisor is
A327076.
BII-numbers of connected set-systems are
A326749.
The smallest BII-number of a connected set-system is
A329625.
The case of strict edges is
A329552.
The smallest MM-number of a set of n nonempty sets is
A329557(n).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
dae=Select[Range[100000],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&];
Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]
Showing 1-6 of 6 results.
Comments