A329559
MM-numbers of multiset clutters (connected weak antichains of multisets).
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227
Offset: 1
The sequence of terms tother with their corresponding clutters begins:
1: {} 37: {{1,1,2}} 91: {{1,1},{1,2}}
2: {{}} 41: {{6}} 97: {{3,3}}
3: {{1}} 43: {{1,4}} 101: {{1,6}}
5: {{2}} 47: {{2,3}} 103: {{2,2,2}}
7: {{1,1}} 49: {{1,1},{1,1}} 107: {{1,1,4}}
9: {{1},{1}} 53: {{1,1,1,1}} 109: {{10}}
11: {{3}} 59: {{7}} 113: {{1,2,3}}
13: {{1,2}} 61: {{1,2,2}} 121: {{3},{3}}
17: {{4}} 67: {{8}} 125: {{2},{2},{2}}
19: {{1,1,1}} 71: {{1,1,3}} 127: {{11}}
23: {{2,2}} 73: {{2,4}} 131: {{1,1,1,1,1}}
25: {{2},{2}} 79: {{1,5}} 137: {{2,5}}
27: {{1},{1},{1}} 81: {{1},{1},{1},{1}} 139: {{1,7}}
29: {{1,3}} 83: {{9}} 149: {{3,4}}
31: {{5}} 89: {{1,1,1,2}} 151: {{1,1,2,2}}
Cf.
A056239,
A112798,
A289509,
A302242,
A302494,
A304716,
A318991,
A319837,
A320275,
A320456,
A328514,
A329553,
A329555.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[100],And[stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]<=1]&]
A329552
Smallest MM-number of a connected set of n sets.
Original entry on oeis.org
1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0
The sequence of terms together with their corresponding systems begins:
1: {}
2: {{}}
39: {{1},{1,2}}
195: {{1},{2},{1,2}}
5655: {{1},{2},{1,2},{1,3}}
62205: {{1},{2},{3},{1,2},{1,3}}
2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
MM-numbers of connected set-systems are
A328514.
The weight of the system with MM-number n is
A302242(n).
Maximum connected divisor is
A327076.
BII-numbers of connected sets of sets are
A326749.
The smallest BII-number of a connected set of n sets is
A329625(n).
Allowing edges to have repeated vertices gives
A329553.
Requiring the edges to form an antichain gives
A329555.
The smallest MM-number of a set of n nonempty sets is
A329557(n).
Cf.
A048143,
A056239,
A112798,
A302494,
A304714,
A304716,
A305079,
A322389,
A328513,
A329554,
A329556,
A329558.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]
A329625
Smallest BII-number of a connected set-system with n edges.
Original entry on oeis.org
0, 1, 5, 7, 23, 31, 63, 127, 383, 511, 1023, 2047, 4095, 8191
Offset: 0
The sequence of terms together with their corresponding set-systems begins:
0: {}
1: {{1}}
5: {{1},{1,2}}
7: {{1},{2},{1,2}}
23: {{1},{2},{1,2},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
63: {{1},{2},{1,2},{3},{1,3},{2,3}}
127: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}}
383: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,4}}
511: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{4},{1,4}}
The smallest BII-number of a set-system with n edges is
A000225(n).
The smallest BII-number of a set-system with n vertices is
A072639(n).
BII-numbers of connected set-systems are
A326749.
MM-numbers of connected set-systems are
A328514.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
First/@GatherBy[Select[Range[0,1000],Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]
Showing 1-3 of 3 results.
Comments