A069361
Number of 3 X n binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
1, 17, 197, 1985, 18621, 167337, 1461797, 12519345, 105683341, 882516857, 7308428597, 60131384705, 492202181661, 4012347269577, 32599584662597, 264152863210065, 2135714594033581, 17236446198921497, 138901692341235797, 1117982939085627425, 8989229069675479101
Offset: 1
The 17 binary arrays for n=2:
01 10 01 10 01 10 01 10 01 10 11 11 11 11 11 11 11
01 10 01 10 11 11 11 11 11 11 01 10 01 01 11 11 11
01 10 11 11 01 10 10 01 11 11 01 10 11 11 01 10 11 - _R. J. Mathar_, Jun 21 2023
A069429
Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.
Original entry on oeis.org
3, 16, 84, 440, 2304, 12064, 63168, 330752, 1731840, 9068032, 47480832, 248612864, 1301753856, 6816071680, 35689414656, 186872201216, 978475548672, 5123364487168, 26826284728320, 140464250421248, 735480363614208, 3851025180000256, 20164229625544704, 105581277033267200
Offset: 1
From _Andrew Howroyd_, Oct 27 2020: (Start)
Some of the 2*a(2) = 32 arrays are:
0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 1 1 1 1 0 1 0 1 1 1 0
1 1 1 1 1 1 1 1 0 1 0 0 1 1
(End)
A069395
Number of n X 20 binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
1048575, 1096024843375, 1117982939085627425, 1092719640470296684383473
Offset: 1
A069452
Half the number of 7 X n binary arrays with no path of adjacent 1's or adjacent 0's from top to bottom or side to side.
Original entry on oeis.org
63, 56757, 18772467, 3912171001
Offset: 2
A069396
Half the number of 3 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 25, 377, 4541, 48329, 476389, 4461489, 40306317, 354713977, 3060942133, 26020259201, 218626028573, 1820140085705, 15043088032837, 123602247055953, 1010793162739629, 8234370308667673, 66870924588036181
Offset: 2
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1))); // G. C. Greubel, Apr 22 2018
-
Drop[CoefficientList[Series[x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x + 1)/(4*x^2 - 6*x + 1), {x, 0, 50}], x], 2] (* G. C. Greubel, Apr 22 2018 *)
-
x='x+O('x^30); Vec(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2 -6*x+1)) \\ G. C. Greubel, Apr 22 2018
A069417
Number of 3 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 15, 147, 1231, 9539, 70679, 509019, 3596367, 25070707, 173088903, 1186544331, 8090866303, 54950124515, 372067098167, 2513408596923, 16948369098159, 114128268554323, 767705581586151, 5159843165163435, 34657637020377055, 232672006452068291, 1561421588852637335
Offset: 1
From _Andrew Howroyd_, Oct 27 2020: (Start)
Some of the a(2) = 15 arrays are:
1 0 1 0 1 0 1 1 1 0
1 1 1 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 1
(End)
-
LinearRecurrence[{13, -48, 40, -8}, {1, 15, 147, 1231}, 25] (* Paolo Xausa, Feb 08 2024 *)
-
Vec((1 + 2*x)/((1 - 7*x + 2*x^2)*(1 - 6*x + 4*x^2)) + O(x^25)) \\ Andrew Howroyd, Oct 27 2020
A069428
Number of n X 8 binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row.
Original entry on oeis.org
1, 6305, 3596367, 1201461339
Offset: 1
A069447
Half the number of n X 9 binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.
Original entry on oeis.org
256, 1731840, 3334295986, 3616567402784
Offset: 2
A069448
Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top to bottom or side to side.
Original entry on oeis.org
3, 35, 269, 1723, 10123, 56757, 309755, 1663515, 8846821, 46767491, 246319875, 1294402053, 6792548971, 35614277883, 186632524741, 977711862035, 5120933346419
Offset: 2
A069362
Number of 4 X n binary arrays with a path of adjacent 1's from top row to bottom row.
Original entry on oeis.org
1, 41, 1041, 22193, 433809, 8057905, 144769425, 2541013617, 43843180113, 746691527217, 12588144461329, 210502738714097, 3497001564166609, 57781030561348017, 950437243856526737, 15574913193760097649, 254416775893204873553, 4144677558181255455025
Offset: 1
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+6*x-16*x^2-8*x^3)/((1-16*x)*(1-19*x+ 74*x^2 -80*x^3-8*x^4)))); // G. C. Greubel, Apr 22 2018
-
Rest[CoefficientList[Series[x*(1+6*x-16*x^2-8*x^3)/((1-16*x)*(1-19*x+ 74*x^2 -80*x^3-8*x^4)), {x,0,50}],x]] (* G. C. Greubel, Apr 22 2018 *)
LinearRecurrence[{35,-378,1264,-1272,-128},{1,41,1041,22193,433809},20] (* Harvey P. Dale, Jan 01 2019 *)
-
Vec(x*(1 + 6*x - 16*x^2 - 8*x^3) / ((1 - 16*x)*(1 - 19*x + 74*x^2 - 80*x^3 - 8*x^4)) + O(x^30)) \\ Colin Barker, Oct 12 2017
Showing 1-10 of 91 results.