cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 93 results. Next

A069429 Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.

Original entry on oeis.org

3, 16, 84, 440, 2304, 12064, 63168, 330752, 1731840, 9068032, 47480832, 248612864, 1301753856, 6816071680, 35689414656, 186872201216, 978475548672, 5123364487168, 26826284728320, 140464250421248, 735480363614208, 3851025180000256, 20164229625544704, 105581277033267200
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Examples

			From _Andrew Howroyd_, Oct 27 2020: (Start)
Some of the 2*a(2) = 32 arrays are:
  0 0   0 0   0 0   0 1   0 1   0 0   0 1
  0 0   0 1   1 1   1 0   1 0   1 1   1 0
  1 1   1 1   1 1   1 1   0 1   0 0   1 1
(End)
		

Crossrefs

Cf. 2 X n A000079, n X 1 A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.
Cf. A084326.

Programs

Formula

Empirical G.f.: x*(3-2*x)/(1-6*x+4*x^2). - Colin Barker, Feb 22 2012
Empirical: a(n) = 3*A084326(n) - 2*A084326(n-1). - R. J. Mathar, Nov 09 2018
From Andrew Howroyd, Oct 27 2020: (Start)
The above conjectures are true and follow from formulas given in A069361 and A069396.
a(n) = (8^n)/2 - A069361(n) + A069396(n).
a(n) = 2^(n-1)*Fibonacci(2*n+2) = A084326(n+1)/2. (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Oct 27 2020

A069395 Number of n X 20 binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1048575, 1096024843375, 1117982939085627425, 1092719640470296684383473
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A005061, n X 2 A001333, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069452 Half the number of 7 X n binary arrays with no path of adjacent 1's or adjacent 0's from top to bottom or side to side.

Original entry on oeis.org

63, 56757, 18772467, 3912171001
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069396 Half the number of 3 X n binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 25, 377, 4541, 48329, 476389, 4461489, 40306317, 354713977, 3060942133, 26020259201, 218626028573, 1820140085705, 15043088032837, 123602247055953, 1010793162739629, 8234370308667673, 66870924588036181
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1))); // G. C. Greubel, Apr 22 2018
  • Mathematica
    Drop[CoefficientList[Series[x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x + 1)/(4*x^2 - 6*x + 1), {x, 0, 50}], x], 2] (* G. C. Greubel, Apr 22 2018 *)
  • PARI
    x='x+O('x^30); Vec(x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2 -6*x+1)) \\ G. C. Greubel, Apr 22 2018
    

Formula

G.f.: x^2*(2*x+1)^2/(1-8*x)/(2*x^2-7*x+1)/(4*x^2-6*x+1). - Vladeta Jovovic, Jul 02 2003
2*a(n) = 8^n+A084326(n+1) -2*A186446(n). - R. J. Mathar, May 09 2023

A069416 Half the number of n X 16 binary arrays with a path of adjacent 1's and a path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

32767, 2104469695, 123602247055953, 6475978445076745163
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 1 X n A000225, 2 X n A016269, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069417 Number of 3 X n binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 15, 147, 1231, 9539, 70679, 509019, 3596367, 25070707, 173088903, 1186544331, 8090866303, 54950124515, 372067098167, 2513408596923, 16948369098159, 114128268554323, 767705581586151, 5159843165163435, 34657637020377055, 232672006452068291, 1561421588852637335
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Examples

			From _Andrew Howroyd_, Oct 27 2020: (Start)
Some of the a(2) = 15 arrays are:
  1 0   1 0   1 0   1 1   1 0
  1 1   1 0   1 1   1 1   1 1
  1 0   1 1   1 1   1 1   0 1
(End)
		

Crossrefs

Cf. 2 X n A001047, n X 2 A034182, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

Programs

  • Mathematica
    LinearRecurrence[{13, -48, 40, -8}, {1, 15, 147, 1231}, 25] (* Paolo Xausa, Feb 08 2024 *)
  • PARI
    Vec((1 + 2*x)/((1 - 7*x + 2*x^2)*(1 - 6*x + 4*x^2)) + O(x^25)) \\ Andrew Howroyd, Oct 27 2020

Formula

From Andrew Howroyd, Oct 27 2020: (Start)
a(n) = A069361(n) - 2*A069396(n).
a(n) = 13*a(n-1) - 48*a(n-2) + 40*a(n-3) - 8*a(n-4) for n > 4.
G.f.: x*(1 + 2*x)/((1 - 7*x + 2*x^2)*(1 - 6*x + 4*x^2)).
(End)

Extensions

Terms a(12) and beyond from Andrew Howroyd, Oct 27 2020

A069428 Number of n X 8 binary arrays with a path of adjacent 1's and no path of adjacent 0's from top row to bottom row.

Original entry on oeis.org

1, 6305, 3596367, 1201461339
Offset: 1

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A001047, n X 2 A034182, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069447 Half the number of n X 9 binary arrays with no path of adjacent 1's or adjacent 0's from top row to bottom row.

Original entry on oeis.org

256, 1731840, 3334295986, 3616567402784
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A000079, n X 1 A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A069448 Half the number of 3 X n binary arrays with no path of adjacent 1's or adjacent 0's from top to bottom or side to side.

Original entry on oeis.org

3, 35, 269, 1723, 10123, 56757, 309755, 1663515, 8846821, 46767491, 246319875, 1294402053, 6792548971, 35614277883, 186632524741, 977711862035, 5120933346419
Offset: 2

Views

Author

R. H. Hardin, Mar 22 2002

Keywords

Crossrefs

Cf. 2 X n A000225, vertical path of 1 A069361-A069395, vertical paths of 0+1 A069396-A069416, vertical path of 1 not 0 A069417-A069428, no vertical paths A069429-A069447, no horizontal or vertical paths A069448-A069452.

A359576 Array read by antidiagonals: T(m,n) is the number of m X n binary arrays with a path of adjacent 1's from top row to bottom row.

Original entry on oeis.org

1, 3, 1, 7, 7, 1, 15, 37, 17, 1, 31, 175, 197, 41, 1, 63, 781, 1985, 1041, 99, 1, 127, 3367, 18621, 22193, 5503, 239, 1, 255, 14197, 167337, 433809, 247759, 29089, 577, 1, 511, 58975, 1461797, 8057905, 10056959, 2764991, 153769, 1393, 1, 1023, 242461, 12519345, 144769425, 384479935, 232824241, 30856705, 812849, 3363, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 06 2023

Keywords

Comments

The grid has m rows and n columns.
"Path" refers to a sequence of L(eft), R(ight), U(p), D(own) steps (edge connectivity like in fixed polyominoes), self-avoiding, starting anywhere in the first row and ending anywhere in the last row. The path does not need to step on all 1's of the array. The path has obviously at least m-1 steps. - R. J. Mathar, Jun 21 2023
Note that the total would be smaller if Up steps were disallowed (as in the original comment above); the smallest grid size for which this phenomenon occurs is 4 X 5. The total number of 4 X 5 and 5 X 5 grids would be 433801 instead of 433809 and 10056087 instead of 10056959, respectively, without Up steps. - Caleb Stanford, Feb 01 2024
Each row and each column satisfies a linear recurrence with constant coefficients. - Pontus von Brömssen, Feb 05 2025

Examples

			Array begins:
====================================================================
m\n| 1   2      3        4          5            6             7
---+----------------------------------------------------------------
1  | 1   3      7       15         31           63           127 ...
2  | 1   7     37      175        781         3367         14197 ...
3  | 1  17    197     1985      18621       167337       1461797 ...
4  | 1  41   1041    22193     433809      8057905     144769425 ...
5  | 1  99   5503   247759   10056959    384479935   14142942975 ...
6  | 1 239  29089  2764991  232824241  18287614751 1374273318721 ...
7  | 1 577 153769 30856705 5388274121 868972410929 ...
  ...
All the 37 2 X 3 binary arrays:
001 001 001 001
001 011 101 111 plus 4 copies left-right flipped
.
010 010 010 010
010 011 110 111
.
011 011 011 011 011 011
001 010 011 101 110 111 plus 6 copies left-right flipped
.
101 101 101 101 101 101
001 011 100 101 110 111
.
111 111 111 111 111 111 111
001 010 011 100 101 110 111 - _R. J. Mathar_, Jun 21 2023
		

References

  • Samuel Dittmer, Hiram Golze, Grant Molnar, and Caleb Stanford, Puzzle and Proof: A Decade of Problems from the Utah Math Olympiad, CRC Press, 2025, p. 51.

Crossrefs

Main diagonal is A365988.
Columns 1..20 are A000012, A001333(n+1), A069378, A069379, A069380-A069395.

Extensions

One additional diagonal of terms added by Caleb Stanford, Feb 05 2024
Showing 1-10 of 93 results. Next