Original entry on oeis.org
0, 0, 0, 1, 20, 65, 350
Offset: 1
The fifth term (20) is a typo for 10.
There is another error in this table in the book (entry for k=6, n=7 should be 21 instead of 20) leading to an incorrect row sum of 876 instead of 877 for the n=7 Bell number.
- M. Barbut and B. Monjardet, Ordre et classification - algèbre et combinatoire - tome II, Série Méthodes Mathématiques des Sciences de l'Homme, Hachette, Paris, 1970, page 101.
A016269
Number of monotone Boolean functions of n variables with 2 mincuts. Also number of Sperner systems with 2 blocks.
Original entry on oeis.org
1, 9, 55, 285, 1351, 6069, 26335, 111645, 465751, 1921029, 7859215, 31964205, 129442951, 522538389, 2104469695, 8460859965, 33972448951, 136276954149, 546269553775, 2188563950925, 8764714059751, 35090233104309, 140455067207455, 562102681589085, 2249257981411351
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 292, #8, s(n,2).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- K. S. Brown, Dedekind's problem
- John Elias, Illustration of Initial Terms: Inverse of the Sierpinski Triangle
- Vladeta Jovovic, Illustration for A016269, A047707, A051112-A051118
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- N. M. Rivière, Recursive formulas on free distributive lattices, J. Combinatorial Theory 5 1968 229--234. MR0231764 (38 #92). - _N. J. A. Sloane_, May 12 2012
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (9,-26,24).
-
[(2^n)*(2^n-1)/2-3^n+2^n: n in [2..30]]; // Vincenzo Librandi, Oct 06 2017
-
a:= n-> Stirling2(n+4, 4)-Stirling2(n+3, 4): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 05 2007
-
CoefficientList[1/((1-2x)(1-3x)(1-4x)) + O[x]^30, x] (* Jean-François Alcover, Nov 28 2015 *)
LinearRecurrence[{9, -26, 24}, {1, 9, 55}, 40] (* Vincenzo Librandi, Oct 06 2017 *)
-
a(n)=(2^n)*(2^n-1)/2-3^n+2^n \\ Charles R Greathouse IV, Mar 22 2016
A032263
Number of ways to partition n labeled elements into 4 pie slices allowing the pie to be turned over; number of 2-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 3, 30, 195, 1050, 5103, 23310, 102315, 437250, 1834503, 7597590, 31175235, 127067850, 515396703, 2083011870, 8396420955, 33779000850, 135696347703, 544527210150, 2183335871475, 8749027724250, 35043169903503, 140313869216430, 561679070838795
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. G. Bower, Transforms (2)
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
I:=[0,0,0,3]; [n le 4 select I[n] else 10*Self(n-1)-35*Self(n-2)+50*Self(n-3)-24*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Oct 19 2013
-
A032263 := proc(n) (4^n-4*3^n+6*2^n-4)/8 ; end: seq(A032263(n),n=1..20) ; # R. J. Mathar, Feb 26 2008
-
CoefficientList[Series[(3x^4)/((1-x)(1-2x)(1-3x)(1-4x)),{x,0,40}],x] (* Harvey P. Dale, Feb 28 2013 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -24,50,-35,10]^(n-1)*[0;0;0;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017
Alternative description from
Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic
A028244
a(n) = 4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1 (essentially Stirling numbers of second kind).
Original entry on oeis.org
0, 0, 0, 6, 60, 390, 2100, 10206, 46620, 204630, 874500, 3669006, 15195180, 62350470, 254135700, 1030793406, 4166023740, 16792841910, 67558001700, 271392695406, 1089054420300, 4366671742950, 17498055448500, 70086339807006
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..1661
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, Electronics Letters ( Volume: 50, Issue: 1, January 2 2014 ).
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Index entries for linear recurrences with constant coefficients, signature (10, -35, 50, -24).
-
[4^(n-1) - 3*3^(n-1) + 3*2^(n-1) - 1: n in [1..30]]; // G. C. Greubel, Nov 19 2017
-
Table[4^(n - 1) - 3*3^(n - 1) + 3*2^(n - 1) - 1, {n, 1, 30}] (* Stefan Steinerberger, Apr 13 2006 *)
Table[6*StirlingS2[n,4], {n,1,30}] (* G. C. Greubel, Nov 19 2017 *)
-
for(n=1,30, print1(6*stirling(n,4,2), ", ")) \\ G. C. Greubel, Nov 19 2017
A000919
a(n) = 4^n - C(4,3)*3^n + C(4,2)*2^n - C(4,1).
Original entry on oeis.org
0, 0, 0, 24, 240, 1560, 8400, 40824, 186480, 818520, 3498000, 14676024, 60780720, 249401880, 1016542800, 4123173624, 16664094960, 67171367640, 270232006800, 1085570781624, 4356217681200, 17466686971800, 69992221794000, 280345359228024, 1122510953731440
Offset: 1
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, http://www.exp-math.uni-essen.de/~immink/pdf/jsac13.pdf, 2013. [This link no longer works, but please do not delete this reference, for historical reasons. Michel Marcus has suggested that the Immink link below points to the published version of the original reference, and I agree. - N. J. A. Sloane, May 29 2023]
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
- T. D. Noe, Table of n, a(n) for n = 1..201
- K. S. Immink, Coding Schemes for Multi-Level Channels that are Intrinsically Resistant Against Unknown Gain and/or Offset Using Reference Symbols, Electronics Letters 50(1):20-22, January 2014.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260.
- P. A. Piza, Kummer numbers, Mathematics Magazine, 21 (1947/1948), 257-260. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Ethan Soloway, Megan Triplett, and Wenshi Zhao, On the Existence of Partition of the Hypercube Graph into 3 Initial Segments, arXiv:2501.05827 [math.CO], 2025. See p. 23.
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.
- A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911. [Annotated scans of pages 30-33 only]
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
with (combstruct):ZL:=[S,{S=Sequence(U,card=r),U=Set(Z,card>=1)}, labeled]: seq(count(subs(r=4,ZL),size=m),m=1..25); # Zerinvary Lajos, Mar 09 2007
A000919:=24/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation
-
nn = 25; CoefficientList[Series[24 x^3/((1 - x) (1 - 2 x) (1 - 3 x) (1 - 4 x)), {x, 0, nn}], x] (* T. D. Noe, Jun 20 2012 *)
k=4; Table[k!StirlingS2[n,k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
-
a(n) = 4!*stirling(n, 4, 2); \\ Altug Alkan, Sep 25 2018
A346895
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^4 / 4!).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 65, 350, 1771, 10290, 86605, 977350, 11778041, 138208070, 1590920695, 18895490250, 245692484311, 3587464083850, 57397496312585, 966066470023550, 16713560617838581, 297182550111615630, 5500448659383161275, 107267326981597659250
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - (Exp[x] - 1)^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^4/4!))) \\ Michel Marcus, Aug 06 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(24^k*prod(j=1, 4*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/24^k); \\ Seiichi Manyama, May 07 2022
A028025
Expansion of 1/((1-3x)*(1-4x)*(1-5x)*(1-6x)).
Original entry on oeis.org
1, 18, 205, 1890, 15421, 116298, 830845, 5709330, 38119741, 249026778, 1599719485, 10142356770, 63639854461, 396031348458, 2448208592125, 15053605980210, 92160458747581, 562225198873338, 3419937140824765
Offset: 0
-
CoefficientList[Series[1/((1-3x)(1-4x)(1-5x)(1-6x)),{x,0,30}],x] (* or *) LinearRecurrence[{18,-119,342,-360},{1,18,205,1890},30] (* Harvey P. Dale, Jan 29 2024 *)
-
Vec(1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A016075
Expansion of 1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)).
Original entry on oeis.org
1, 38, 905, 17290, 289821, 4453638, 64331905, 887339330, 11810819141, 152832918238, 1933092302505, 23997027406170, 293289532268461, 3537885908902838, 42204462297434705, 498697803478957810, 5844588402226277781, 68011678300853991438, 786547256602640400505
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)))); // Vincenzo Librandi, Jun 24 2013
-
I:=[1, 38, 905, 17290]; [n le 4 select I[n] else 38*Self(n-1)-539*Self(n-2)+3382*Self(n-3)-7920*Self(n-4): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
-
CoefficientList[Series[1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x)), {x,0,20}], x] (* Vincenzo Librandi, Jun 23 2013 *)
-
x='x+O('x^30); Vec(1/((1-8*x)*(1-9*x)*(1-10*x)*(1-11*x))) \\ G. C. Greubel, Feb 07 2018
A028165
Expansion of 1/((1-5x)*(1-6x)*(1-7x)*(1-8x)).
Original entry on oeis.org
1, 26, 425, 5590, 64701, 688506, 6906145, 66324830, 616252901, 5580303586, 49508360265, 432061044870, 3720287489101, 31681154472266, 267320885100785, 2238337148081710, 18621251375573301, 154069635600426546
Offset: 0
A028200
Expansion of 1/((1-6x)*(1-7x)*(1-8x)*(1-9x)).
Original entry on oeis.org
1, 30, 565, 8550, 113701, 1388310, 15958405, 175419750, 1863406501, 19269697590, 195034120645, 1939826329350, 19018419228901, 184245490086870, 1767124523521285, 16805853434269350, 158682246543588901, 1489103597614860150, 13900428943759584325
Offset: 0
-
CoefficientList[Series[ 1/((1-6x)(1-7x)(1-8x)(1-9x)), {x, 0, 20} ], x]
LinearRecurrence[{30,-335,1650,-3024},{1,30,565,8550},20] (* Harvey P. Dale, Mar 27 2023 *)
-
Vec(1/((1-6*x)*(1-7*x)*(1-8*x)*(1-9*x)) + O(x^30)) \\ Michel Marcus, Feb 12 2017
Showing 1-10 of 31 results.
Comments