A346894
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^3 / 3!).
Original entry on oeis.org
1, 0, 0, 1, 6, 25, 110, 721, 6286, 57625, 541470, 5558641, 64351166, 819480025, 11140978030, 160711583761, 2472834185646, 40597082635225, 706816137889790, 12974021811748081, 250395124862965726, 5074637684604691225, 107798916619788396750
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - (Exp[x] - 1)^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^3/3!))) \\ Michel Marcus, Aug 06 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (3*k)!*x^(3*k)/(6^k*prod(j=1, 3*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/6^k); \\ Seiichi Manyama, May 07 2022
A327505
Number of set partitions of [n] where each subset is again partitioned into four nonempty subsets.
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 65, 350, 1736, 9030, 60355, 561550, 6183221, 69469400, 761767370, 8239194600, 91058524831, 1073790441370, 13900626022985, 196759304278250, 2963381404815566, 46227649788125190, 736940002561065325, 12005645243802471250, 201482801573414254301
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*Stirling2(j, 4), j=4..n))
end:
seq(a(n), n=0..25);
-
a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 4], {j, 4, n}]];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/(24^k*k!)); \\ Seiichi Manyama, May 07 2022
A330047
Expansion of e.g.f. exp(-x) / (1 - sinh(x)).
Original entry on oeis.org
1, 0, 1, 3, 13, 75, 511, 4053, 36793, 375735, 4262971, 53203953, 724379173, 10684377795, 169713810631, 2888340723453, 52433443111153, 1011340189494255, 20654264750645491, 445249365444296553, 10103533212012216733, 240731286454287293115, 6008902898851584479551
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[-x]/(1 - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^2/2))) \\ Seiichi Manyama, May 07 2022
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(2^k*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 2, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/2^k); \\ Seiichi Manyama, May 07 2022
A346923
Expansion of e.g.f. 1 / (1 - log(1 - x)^4 / 4!).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 85, 735, 6839, 69804, 784580, 9680000, 130312336, 1901581968, 29895585356, 503657235900, 9051009737834, 172807817059664, 3493189152511608, 74530548004474584, 1673793045085649146, 39467836062718058100, 974939402596817961050, 25177327470510057799550
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - Log[1 - x]^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 4]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^4/4!))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1))/24^k); \\ Seiichi Manyama, May 06 2022
A353775
Expansion of e.g.f. 1/(1 - (exp(x) - 1)^4).
Original entry on oeis.org
1, 0, 0, 0, 24, 240, 1560, 8400, 81144, 1638000, 31058520, 482499600, 6905646264, 114015261360, 2456232531480, 59734751403600, 1427946773067384, 33377481440110320, 818549745973204440, 22338800420915168400, 667566534457962216504, 20735588176755396824880
Offset: 0
-
With[{nn=30},CoefficientList[Series[1/(1-(Exp[x]-1)^4),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 05 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(exp(x)-1)^4)))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/prod(j=1, 4*k, 1-j*x)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2));
A346920
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^5 / 5!).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42777, 260590, 1809060, 17418401, 229768539, 3402511476, 50013258750, 706670789371, 9659104177101, 130958047050698, 1834295186003784, 27849428308615221, 472297857494304303, 8856291348143365456, 176841068643273207426
Offset: 0
-
nmax = 24; CoefficientList[Series[1/(1 - (Exp[x] - 1)^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 5] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^5/5!))) \\ Michel Marcus, Aug 07 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (5*k)!*x^(5*k)/(120^k*prod(j=1, 5*k, 1-j*x)))) \\ Seiichi Manyama, May 09 2022
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/120^k); \\ Seiichi Manyama, May 09 2022
A354393
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^4 / 24).
Original entry on oeis.org
1, 0, 0, 0, -1, -10, -65, -350, -1631, -5250, 18395, 685850, 10485739, 127737610, 1336804105, 11432407350, 54280609109, -712071643930, -29671691715185, -660215774400350, -11770593620859521, -176475952496559870, -2055362595355830475, -9749893741512339250
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(exp(x)-1)^4/24)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/(-24)^k);
A353885
Expansion of e.g.f. 1/(1 - (x * (exp(x) - 1))^4 / 576).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 13650, 115500, 841995, 5555550, 34139105, 198948750, 1175994820, 10315705400, 192609389700, 4563951046200, 98992258506345, 1898260633492650, 32787422848455275, 520556451785466250, 7722233521138092726, 108688302800107222500
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*(exp(x)-1))^4/576)))
-
a(n) = n!*sum(k=0, n\8, (4*k)!*stirling(n-4*k, 4*k, 2)/(576^k*(n-4*k)!));
A346954
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
Showing 1-9 of 9 results.
Comments