cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A346895 Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^4 / 4!).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1771, 10290, 86605, 977350, 11778041, 138208070, 1590920695, 18895490250, 245692484311, 3587464083850, 57397496312585, 966066470023550, 16713560617838581, 297182550111615630, 5500448659383161275, 107267326981597659250
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - (Exp[x] - 1)^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^4/4!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(24^k*prod(j=1, 4*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/24^k); \\ Seiichi Manyama, May 07 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * Stirling2(k,4) * a(n-k).
a(n) ~ n! / (4*(1 + 2^(-3/4)*3^(-1/4)) * log(1 + 2^(3/4)*3^(1/4))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (4*k)! * x^(4*k)/(24^k * Product_{j=1..4*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/24^k. (End)

A346921 Expansion of e.g.f. 1 / (1 - log(1 - x)^2 / 2).

Original entry on oeis.org

1, 0, 1, 3, 17, 110, 874, 8064, 85182, 1012248, 13369026, 194245590, 3079135806, 52880064588, 978038495316, 19381794788160, 409702099828104, 9201877089355584, 218832476773294008, 5493266481129425064, 145153549897858762776, 4027310838211114515600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[1/(1 - Log[1 - x]^2/2), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^2/2))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/2^k); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * |Stirling1(k,2)| * a(n-k).
a(n) ~ n! * exp(sqrt(2)*n) / (sqrt(2) * (exp(sqrt(2)) - 1)^(n+1)). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * |Stirling1(n,2*k)|/2^k. - Seiichi Manyama, May 06 2022

A346922 Expansion of e.g.f. 1 / (1 + log(1 - x)^3 / 3!).

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 245, 2044, 19572, 210524, 2513760, 33012276, 472963876, 7340889192, 122703087416, 2197496734224, 41979155247520, 852063971170960, 18312093589455440, 415420659953439840, 9920128280950954080, 248735658391768241280, 6533773435848445617600
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 + Log[1 - x]^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 3]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-x)^3/3!))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1))/6^k); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * |Stirling1(k,3)| * a(n-k).
a(n) ~ n! * 6^(1/3) / (3 * exp(6^(1/3)) * (1 - exp(-6^(1/3)))^(n+1)). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * |Stirling1(n,3*k)|/6^k. - Seiichi Manyama, May 06 2022

A346924 Expansion of e.g.f. 1 / (1 + log(1 - x)^5 / 5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269577, 3430790, 46480830, 671260876, 10329270952, 169125055736, 2940784282800, 54182845939104, 1055291277366108, 21674715826211532, 468366193441002564, 10624074081842024496, 252432685158931968768, 6270222495850552958004
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 + Log[1 - x]^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 5]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-x)^5/5!))) \\ Michel Marcus, Aug 07 2021
    
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*abs(stirling(n, 5*k, 1))/120^k); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * |Stirling1(k,5)| * a(n-k).
a(n) ~ n! * 2^(3/5) * 3^(1/5) * exp(2^(3/5)*15^(1/5)*n) / (5^(4/5) * (exp(2^(3/5)*15^(1/5)) - 1)^(n+1)). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * |Stirling1(n,5*k)|/120^k. - Seiichi Manyama, May 06 2022

A347003 Expansion of e.g.f. exp( log(1 - x)^4 / 4! ).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 85, 735, 6804, 68544, 754130, 9044750, 117773656, 1656897528, 25061576176, 405667844400, 6997383182854, 128126051451184, 2481884332498848, 50702417505257904, 1089371806098805286, 24555007848629510700, 579348221233739760550, 14278529041496660104450
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[Log[1 - x]^4/4!], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 4]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1))/(24^k*k!)); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,4)| * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * |Stirling1(n,4*k)|/(24^k * k!). - Seiichi Manyama, May 06 2022

A353119 Expansion of e.g.f. 1/(1 - log(1 - x)^4).

Original entry on oeis.org

1, 0, 0, 0, 24, 240, 2040, 17640, 202776, 3066336, 52446720, 933636000, 17416490784, 350580364992, 7719355635264, 184232862777600, 4691944607751936, 126358891201529856, 3591751011211717632, 107772466927523060736, 3408777017097439186944
Offset: 0

Views

Author

Seiichi Manyama, May 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-Log[1-x]^4),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 13 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1-x)^4)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i, j)*abs(stirling(j, 4, 1))*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1)));

Formula

a(0) = 1; a(n) = 24 * Sum_{k=1..n} binomial(n,k) * |Stirling1(k,4)| * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * |Stirling1(n,4*k)|.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (4 * (exp(1) - 1)^(n+1)). - Vaclav Kotesovec, May 07 2022

A353882 Expansion of e.g.f. 1/(1 - (x * log(1-x))^4 / 576).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 17850, 242550, 3350655, 48108060, 724403680, 11478967500, 191632761320, 3369643717440, 62346624827760, 1212116258480400, 24721764604046280, 528066880710319440, 11793526736005503720, 274937000436908714520
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-(x*log(1-x))^4/576)))
    
  • PARI
    a(n) = n!*sum(k=0, n\8, (4*k)!*abs(stirling(n-4*k, 4*k, 1))/(576^k*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/8)} (4*k)! * |Stirling1(n-4*k,4*k)|/(576^k * (n-4*k)!).

A354390 Expansion of e.g.f. 1/(1 + log(1 + x)^4 / 24).

Original entry on oeis.org

1, 0, 0, 0, -1, 10, -85, 735, -6699, 64764, -662780, 7139000, -80273116, 931853208, -10990479136, 128253707400, -1402525474414, 12224484229744, -9767136488568, -3662083220408136, 144120068237692294, -4329792070579951500, 118808185600297890950
Offset: 0

Views

Author

Seiichi Manyama, May 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1+x)^4/24)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 4, 1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 1)/(-24)^k);

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * Stirling1(k,4) * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling1(n,4*k)/(-24)^k.
Showing 1-8 of 8 results.