A377728 Convolution of Leonardo numbers with Jacobsthal numbers.
0, 1, 2, 7, 16, 39, 86, 189, 402, 847, 1760, 3631, 7438, 15165, 30794, 62343, 125904, 253783, 510758, 1026685, 2061730, 4136991, 8295872, 16627167, 33311646, 66716029, 133582106, 267406999, 535206832, 1071049287, 2143127030, 4287918141, 8578528818, 17161414255
Offset: 0
Links
- Prabha Sivaraman Nair, Convolution Identities of p-numbers, Math. Montis. (2024), pp. 26-43.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,1,2).
Programs
-
Mathematica
LinearRecurrence[{3, 0, -5, 1, 2}, {0, 1, 2, 7, 16}, 34] (* Amiram Eldar, Nov 07 2024 *)
-
Python
from sympy import fibonacci def A377728(n): return 1-(fibonacci(n+2)<<2)+(m:=(4<
>1 # Chai Wah Wu, Nov 09 2024
Formula
G.f.: -x*(x^2-x+1)/((x-1)*(2*x-1)*(x+1)*(x^2+x-1)). - Alois P. Heinz, Nov 05 2024
E.g.f.: 2*cosh(2*x) + sinh(x) + 2*sinh(2*x) - 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Nov 06 2024
Comments