cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A355409 Expansion of e.g.f. 1/(1 + exp(2*x) - exp(3*x)).

Original entry on oeis.org

1, 1, 7, 55, 571, 7471, 117307, 2148175, 44958571, 1058555791, 27693129307, 796934764495, 25018548004171, 850870651904911, 31163746960955707, 1222922731101304015, 51189052318085027371, 2276586205163067346831, 107204914362429152404507
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2022

Keywords

Comments

Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [1, 1, 7, 1, 4, 1, 1, 1, 7, 1, 4, 1, 1, 1, 7, 1, 4, 1, 1, ...] with an apparent period of 6 = phi(9) beginning at a(1). Cf. A354242. - Peter Bala, Apr 16 2024

Crossrefs

Cf. A371460 (binomial transform).

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(2*x)-exp(3*x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-2^j)*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (3^k - 2^k) * binomial(n,k) * a(n-k).
a(n) ~ n! / ((3 + r^2) * log(r)^(n+1)), where r = (1 + 2*cosh(log((29 + 3*sqrt(93))/2)/3))/3. - Vaclav Kotesovec, Jul 01 2022

A370163 a(0) = 2, a(n) = (-1)^n + (-2)^n + (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0.

Original entry on oeis.org

2, 1, 5, 25, 161, 1321, 13025, 149605, 1963841, 29004721, 475975745, 8591917885, 169193833121, 3609452038921, 82924458549665, 2041207822721365, 53594538159184001, 1495143168658285921, 44164021453758342785, 1377005070100813288045, 45193800193226286112481
Offset: 0

Views

Author

Prabha Sivaramannair, Feb 26 2024

Keywords

Comments

Inverse binomial transform of A370092 + A370456.

Crossrefs

Programs

  • PARI
    seq(n)={my(p=exp(x + O(x*x^n))); Vec(serlaplace(2*(1 + p)/(1 + p + p^2 - p^3)))} \\ Andrew Howroyd, Feb 26 2024
  • SageMath
    def a(m):
        if m==0:
            return 2
        else:
            return (-1)^m+(-2)^m+1/2*sum([(1-(-2)^j-(-1)^j)*binomial(m,j)*a(m-j) for j in [1,..,m]])
    list(a(m) for m in [0,..,20])
    
  • SageMath
    f=2*(1+e^x)/(1+e^x+e^(2*x)-e^(3*x))
    print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])
    

Formula

E.g.f.: 2*(1 + exp(x))/(1 + exp(x) + exp(2*x) - exp(3*x)).

A370456 a(0) = 1, a(n) = (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0.

Original entry on oeis.org

1, 2, 6, 29, 192, 1577, 15516, 178229, 2339952, 34559057, 567117876, 10237161629, 201592448712, 4300618438937, 98803485774636, 2432074390036229, 63857242954421472, 1781444969999245217, 52620896463516221796, 1640684857196257578029, 53847865360369426418232
Offset: 0

Views

Author

Prabha Sivaramannair, Feb 23 2024

Keywords

Comments

Binomial transform of A370092.

Crossrefs

Programs

  • PARI
    seq(n)={my(p=exp(x + O(x*x^n))); Vec(serlaplace(2*p^2/(1 + p + p^2 - p^3)))} \\ Andrew Howroyd, Feb 23 2024
  • SageMath
    def a(m):
        if m==0:
            return 1
        else:
            return 1/2*sum([(1-(-2)^j-(-1)^j)*binomial(m,j)*a(m-j) for j in [1,..,m]])
    list(a(m) for m in [0,..,20])
    

Formula

E.g.f.: 2*exp(2*x)/(1 + exp(x) + exp(2*x) - exp(3*x)).
Showing 1-3 of 3 results.