cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371984 Binomial transform of A371460.

Original entry on oeis.org

1, 3, 15, 117, 1227, 16053, 251955, 4613997, 96566667, 2273672133, 59482039395, 1711735382877, 53737315411707, 1827584253650613, 66936582030410835, 2626714554845111757, 109948916113808074347, 4889877314768678051493
Offset: 0

Views

Author

Prabha Sivaramannair, Apr 15 2024

Keywords

Crossrefs

Cf. A371460.

Programs

  • Mathematica
    nn = 17; a[0] = 1; Do[Set[a[n], 2^n + Sum[(3^j - 2^j)*Binomial[n, j]*a[n - j], {j, n}]], {n, nn}]; Array[a, nn + 1, 0] (* Michael De Vlieger, Apr 19 2024 *)
  • SageMath
    def a(n):
        if n==0:
            return 1
        else:
            return sum([(1-(-2)^j)*binomial(n,j)*a(n-j) for j in [1,..,n]])
    list(a(n) for n in [0,..,20])
    
  • SageMath
    f= e^(2*x)/(1 + e^(2*x) - e^(3*x))
    print([(diff(f,x,i)).subs(x=0) for i in [0,..,20]])

Formula

a(0) = 1, a(n) = Sum_{j=1..n} (1-(-2)^j)*binomial(n,j)*a(n-j) for n > 0.
a(0) = 1, a(n) = 2^n + Sum_{j=1..n} (3^j-2^j)*binomial(n,j)*a(n-j) for n > 0.
E.g.f.: exp(2*x)/(1 + exp(2*x) - exp(3*x)).

A355409 Expansion of e.g.f. 1/(1 + exp(2*x) - exp(3*x)).

Original entry on oeis.org

1, 1, 7, 55, 571, 7471, 117307, 2148175, 44958571, 1058555791, 27693129307, 796934764495, 25018548004171, 850870651904911, 31163746960955707, 1222922731101304015, 51189052318085027371, 2276586205163067346831, 107204914362429152404507
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2022

Keywords

Comments

Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [1, 1, 7, 1, 4, 1, 1, 1, 7, 1, 4, 1, 1, 1, 7, 1, 4, 1, 1, ...] with an apparent period of 6 = phi(9) beginning at a(1). Cf. A354242. - Peter Bala, Apr 16 2024

Crossrefs

Cf. A371460 (binomial transform).

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+exp(2*x)-exp(3*x))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, (3^j-2^j)*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (3^k - 2^k) * binomial(n,k) * a(n-k).
a(n) ~ n! / ((3 + r^2) * log(r)^(n+1)), where r = (1 + 2*cosh(log((29 + 3*sqrt(93))/2)/3))/3. - Vaclav Kotesovec, Jul 01 2022
Showing 1-2 of 2 results.