A324162
Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0
T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 5, 3, 1;
0, 15, 10, 6, 1;
0, 52, 45, 25, 10, 1;
0, 203, 241, 100, 65, 15, 1;
0, 877, 1428, 511, 350, 140, 21, 1;
0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
...
Columns k=0-10 give:
A000007,
A000110 (for n>0),
A060311,
A327504,
A327505,
A327506,
A327507,
A327508,
A327509,
A327510,
A327511.
-
T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
nmax = 10;
col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
-
T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022
A346895
Expansion of e.g.f. 1 / (1 - (exp(x) - 1)^4 / 4!).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 65, 350, 1771, 10290, 86605, 977350, 11778041, 138208070, 1590920695, 18895490250, 245692484311, 3587464083850, 57397496312585, 966066470023550, 16713560617838581, 297182550111615630, 5500448659383161275, 107267326981597659250
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - (Exp[x] - 1)^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] StirlingS2[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-(exp(x)-1)^4/4!))) \\ Michel Marcus, Aug 06 2021
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(24^k*prod(j=1, 4*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 4, 2)*v[i-j+1])); v; \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/24^k); \\ Seiichi Manyama, May 07 2022
A347003
Expansion of e.g.f. exp( log(1 - x)^4 / 4! ).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 85, 735, 6804, 68544, 754130, 9044750, 117773656, 1656897528, 25061576176, 405667844400, 6997383182854, 128126051451184, 2481884332498848, 50702417505257904, 1089371806098805286, 24555007848629510700, 579348221233739760550, 14278529041496660104450
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[Log[1 - x]^4/4!], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 4]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1))/(24^k*k!)); \\ Seiichi Manyama, May 06 2022
A353665
Expansion of e.g.f. exp((exp(x) - 1)^4).
Original entry on oeis.org
1, 0, 0, 0, 24, 240, 1560, 8400, 60984, 912240, 15938520, 242998800, 3300493944, 44583979440, 690641504280, 12868117189200, 264164524958904, 5481631005177840, 112822632387018840, 2367468210865875600, 52624238539033647864, 1258531092544541563440
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((exp(x)-1)^4)))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (4*k)!*x^(4*k)/(k!*prod(j=1, 4*k, 1-j*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=24*sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/k!);
A346976
Expansion of e.g.f. log( 1 + (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1666, 6510, 7855, -270050, -4942894, -63052990, -682650605, -6309889950, -42960995804, 348211510, 7739540496935, 202902567668150, 3863986259609686, 61527382177040010, 807717870749781475, 7066953051021894250, -33781117662453993424
Offset: 4
-
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
A354397
Expansion of e.g.f. exp( -(exp(x) - 1)^4 / 24 ).
Original entry on oeis.org
1, 0, 0, 0, -1, -10, -65, -350, -1666, -6510, -7855, 270050, 4948669, 63503440, 702095030, 6924754200, 58870214129, 356043924590, -615569993285, -74306502570650, -1783956267419536, -32695418069393310, -520090808927130925, -7317310078355307250, -87056749651694635451
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^4/24)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/((-24)^k*k!));
A346954
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
A353896
Expansion of e.g.f. exp( (x * (exp(x) - 1))^4 / 576 ).
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 70, 1260, 13650, 115500, 841995, 5555550, 34139105, 198948750, 1144463320, 8171563400, 112204064700, 2364061354200, 49912312090845, 951208121086650, 16403948060775275, 260328078068154250, 3860274855288458376, 54182965918066177500
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(exp(x)-1))^4/576)))
-
a(n) = n!*sum(k=0, n\8, (4*k)!*stirling(n-4*k, 4*k, 2)/(576^k*k!*(n-4*k)!));
Showing 1-8 of 8 results.