cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346946 Expansion of e.g.f. log( 1 + log(1 + x)^4 / 4! ).

Original entry on oeis.org

1, -10, 85, -735, 6734, -66024, 693230, -7774250, 92759821, -1172483598, 15630569591, -218793782025, 3201481037819, -48746860400024, 768683653934928, -12487871805640344, 207761719406853466, -3513910668343842900, 59833161662103132050, -1011244718827893629750
Offset: 4

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + Log[1 + x]^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
    a[n_] := a[n] = StirlingS1[n, 4] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 23}]

Formula

a(n) = Stirling1(n,4) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling1(n-k,4) * k * a(k).
a(n) = Sum_{k=1..floor(n/4)} (-1)^(k-1) * (4*k)! * Stirling1(n,4*k)/(k * 24^k). - Seiichi Manyama, Jan 23 2025

A346974 Expansion of e.g.f. log( 1 + (exp(x) - 1)^2 / 2 ).

Original entry on oeis.org

1, 3, 4, -15, -134, -357, 2374, 33645, 133186, -1288617, -24887906, -130115895, 1666879306, 40612637523, 262868197414, -4221449488635, -123802488449774, -952293015617937, 18497401668708334, 632675912865355425, 5622243546094977946, -128799294291220310997
Offset: 2

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    a[n_] := a[n] = StirlingS2[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]

Formula

a(n) = Stirling2(n,2) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,2) * k * a(k).
a(n) ~ -n! * 2^(n+1) * cos(n*arctan(2*arctan(sqrt(2))/log(3))) / (n * (4*arctan(sqrt(2))^2 + log(3)^2)^(n/2)). - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/2)} (-1)^(k-1) * (2*k)! * Stirling2(n,2*k)/(k * 2^k). - Seiichi Manyama, Jan 23 2025

A346975 Expansion of e.g.f. log( 1 + (exp(x) - 1)^3 / 3! ).

Original entry on oeis.org

1, 6, 25, 80, 91, -1694, -22875, -193740, -1119569, -768394, 101162425, 1930987240, 23583202371, 181575384906, -306743537075, -45405986594980, -1070132302146089, -16439720013909794, -145808623945689375, 1048196472097011600, 84226169502099763051
Offset: 3

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
    a[n_] := a[n] = StirlingS2[n, 3] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 23}]

Formula

a(n) = Stirling2(n,3) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,3) * k * a(k).
a(n) ~ -(n-1)! * 2^(n+1) * cos(n*arctan(2*arctan(3^(5/6)/(2^(2/3) + 3^(1/3))) / log(1 + 6^(1/3) + 6^(2/3)))) / (4*arctan(3^(5/6)/(2^(2/3) + 3^(1/3)))^2 + log(1 + 6^(1/3) + 6^(2/3))^2)^(n/2). - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/3)} (-1)^(k-1) * (3*k)! * Stirling2(n,3*k)/(k * 6^k). - Seiichi Manyama, Jan 23 2025

A346977 Expansion of e.g.f. log( 1 + (exp(x) - 1)^5 / 5! ).

Original entry on oeis.org

1, 15, 140, 1050, 6951, 42399, 239800, 1164570, 2553551, -54771717, -1384474728, -23286667950, -339924740609, -4554547609233, -56481301888144, -630768487283886, -5665064764515849, -18095553874845909, 924820173031946752, 35413415495503624986
Offset: 5

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
    a[n_] := a[n] = StirlingS2[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]

Formula

a(n) = Stirling2(n,5) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,5) * k * a(k).
a(n) ~ -(n-1)! * 2^(1+n) * 5^n * cos(n*arctan((2*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))) / log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))) / (100*arctan(sqrt(10 - 2*sqrt(5))/(1 + sqrt(5) + 2^(7/5)/15^(1/5)))^2 + (5*log(1 + 3^(1/5)*5^(7/10)/2^(2/5) + 15^(1/5)/2^(2/5) + 2^(6/5)*15^(2/5)))^2)^(n/2). - Vaclav Kotesovec, Aug 10 2021
a(n) = Sum_{k=1..floor(n/5)} (-1)^(k-1) * (5*k)! * Stirling2(n,5*k)/(k * 120^k). - Seiichi Manyama, Jan 23 2025
Showing 1-4 of 4 results.