A346944
Expansion of e.g.f. log( 1 + log(1 + x)^2 / 2 ).
Original entry on oeis.org
1, -3, 8, -20, 49, -189, 1791, -21132, 228306, -2274690, 22190772, -230289696, 2756380782, -38757988710, 608149754538, -10057914084048, 171037444641816, -3000345245061048, 55157102668064592, -1077263181846230400, 22411300073192730360, -492846784406541548280
Offset: 2
-
nmax = 23; CoefficientList[Series[Log[1 + Log[1 + x]^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
a[n_] := a[n] = StirlingS1[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]
A346945
Expansion of e.g.f. log( 1 + log(1 + x)^3 / 3! ).
Original entry on oeis.org
1, -6, 35, -235, 1834, -16352, 164044, -1830630, 22513326, -302700926, 4419167532, -69637654996, 1178377833424, -21315571470320, 410529985172400, -8388475139138320, 181270810764205440, -4130796696683135280, 99008773205008777760, -2490134250475836315120
Offset: 3
-
nmax = 22; CoefficientList[Series[Log[1 + Log[1 + x]^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
a[n_] := a[n] = StirlingS1[n, 3] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 22}]
A346947
Expansion of e.g.f. log( 1 + log(1 + x)^5 / 5! ).
Original entry on oeis.org
1, -15, 175, -1960, 22449, -269451, 3423860, -46238280, 664233856, -10143487354, 164423204582, -2823783679080, 51273355515264, -982236541934430, 19809898439192946, -419752648063849626, 9325875631405818996, -216846992855331506052, 5267598064689049209252
Offset: 5
-
nmax = 23; CoefficientList[Series[Log[1 + Log[1 + x]^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
a[n_] := a[n] = StirlingS1[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 23}]
A346976
Expansion of e.g.f. log( 1 + (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1666, 6510, 7855, -270050, -4942894, -63052990, -682650605, -6309889950, -42960995804, 348211510, 7739540496935, 202902567668150, 3863986259609686, 61527382177040010, 807717870749781475, 7066953051021894250, -33781117662453993424
Offset: 4
-
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
A354318
Expansion of e.g.f. exp(-log(1 + x)^4 / 24).
Original entry on oeis.org
1, 0, 0, 0, -1, 10, -85, 735, -6734, 66024, -693230, 7774250, -92754046, 1172033148, -15609023066, 217966080150, -3173198858894, 47842246890224, -740798341880328, 11644416638285544, -182433719522266066, 2752864573552860900, -36826753489645422050
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[-Log[1+x]^4/24],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 27 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1+x)^4/24)))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x)^(log(1+x)^3/24)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 4, 1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 1)/((-24)^k*k!));
Showing 1-5 of 5 results.