cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A354317 Expansion of e.g.f. exp(-log(1 + x)^2 / 2).

Original entry on oeis.org

1, 0, -1, 3, -8, 20, -34, -126, 2514, -28008, 285774, -2922810, 30858048, -339954264, 3920819748, -47319853140, 596005041852, -7799132781792, 105344546511684, -1454910026870412, 20242465245436128, -276289562032117200, 3490199850169557480
Offset: 0

Views

Author

Seiichi Manyama, May 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1+x)^2/2)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x)^(log(1+x)/2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 2, 1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 1)/((-2)^k*k!));

Formula

E.g.f.: 1/(1 + x)^(log(1 + x)/2).
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling1(k,2) * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling1(n,2*k)/((-2)^k * k!).

A354390 Expansion of e.g.f. 1/(1 + log(1 + x)^4 / 24).

Original entry on oeis.org

1, 0, 0, 0, -1, 10, -85, 735, -6699, 64764, -662780, 7139000, -80273116, 931853208, -10990479136, 128253707400, -1402525474414, 12224484229744, -9767136488568, -3662083220408136, 144120068237692294, -4329792070579951500, 118808185600297890950
Offset: 0

Views

Author

Seiichi Manyama, May 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1+x)^4/24)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 4, 1)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 1)/(-24)^k);

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * Stirling1(k,4) * a(n-k).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling1(n,4*k)/(-24)^k.
Showing 1-2 of 2 results.