A346945
Expansion of e.g.f. log( 1 + log(1 + x)^3 / 3! ).
Original entry on oeis.org
1, -6, 35, -235, 1834, -16352, 164044, -1830630, 22513326, -302700926, 4419167532, -69637654996, 1178377833424, -21315571470320, 410529985172400, -8388475139138320, 181270810764205440, -4130796696683135280, 99008773205008777760, -2490134250475836315120
Offset: 3
-
nmax = 22; CoefficientList[Series[Log[1 + Log[1 + x]^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] &
a[n_] := a[n] = StirlingS1[n, 3] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 22}]
A346974
Expansion of e.g.f. log( 1 + (exp(x) - 1)^2 / 2 ).
Original entry on oeis.org
1, 3, 4, -15, -134, -357, 2374, 33645, 133186, -1288617, -24887906, -130115895, 1666879306, 40612637523, 262868197414, -4221449488635, -123802488449774, -952293015617937, 18497401668708334, 632675912865355425, 5622243546094977946, -128799294291220310997
Offset: 2
-
nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
a[n_] := a[n] = StirlingS2[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]
A346976
Expansion of e.g.f. log( 1 + (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1666, 6510, 7855, -270050, -4942894, -63052990, -682650605, -6309889950, -42960995804, 348211510, 7739540496935, 202902567668150, 3863986259609686, 61527382177040010, 807717870749781475, 7066953051021894250, -33781117662453993424
Offset: 4
-
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
A346977
Expansion of e.g.f. log( 1 + (exp(x) - 1)^5 / 5! ).
Original entry on oeis.org
1, 15, 140, 1050, 6951, 42399, 239800, 1164570, 2553551, -54771717, -1384474728, -23286667950, -339924740609, -4554547609233, -56481301888144, -630768487283886, -5665064764515849, -18095553874845909, 924820173031946752, 35413415495503624986
Offset: 5
-
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
a[n_] := a[n] = StirlingS2[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 24}]
Showing 1-4 of 4 results.