cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A327504 Number of set partitions of [n] where each subset is again partitioned into three nonempty subsets.

Original entry on oeis.org

1, 0, 0, 1, 6, 25, 100, 511, 3626, 29765, 250200, 2146771, 19575446, 195336505, 2124840900, 24646324431, 299803782466, 3809251939245, 50698296967600, 708349718638891, 10372758309704686, 158546862369781985, 2519789706502636700, 41545703617137280551
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=3 of A324162.
Cf. A346894.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 3), j=3..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j -1] StirlingS2[j, 3], {j, 3, n}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(6^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^3/3!).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(6^k * k!). - Seiichi Manyama, May 07 2022

A060311 Expansion of e.g.f. exp((exp(x)-1)^2/2).

Original entry on oeis.org

1, 0, 1, 3, 10, 45, 241, 1428, 9325, 67035, 524926, 4429953, 40010785, 384853560, 3925008361, 42270555603, 478998800290, 5693742545445, 70804642315921, 918928774274028, 12419848913448565, 174467677050577515, 2542777209440690806, 38388037137038323353
Offset: 0

Views

Author

Vladeta Jovovic, Mar 27 2001

Keywords

Comments

After the first term, this is the Stirling transform of the sequence of moments of the standard normal (or "Gaussian") probability distribution. It is not itself a moment sequence of any probability distribution. - Michael Hardy (hardy(AT)math.umn.edu), May 29 2005
a(n) is the number of simple labeled graphs on n nodes in which each component is a complete bipartite graph. - Geoffrey Critzer, Dec 03 2011

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, Ex. 3.3.5b.

Crossrefs

Column k=2 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 2), j=2..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    a = Exp[x] - 1; Range[0, 20]! CoefficientList[Series[Exp[a^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Dec 03 2011 *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff( exp((exp(x+x*O(x^n))-1)^2/2), n)) /* Michael Somos, Jun 01 2005 */
    
  • PARI
    { for (n=0, 100, write("b060311.txt", n, " ", n!*polcoeff(exp((exp(x + x*O(x^n)) - 1)^2/2), n)); ) } \\ Harry J. Smith, Jul 03 2009
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/(2^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. A(x) = B(exp(x)-1) where B(x)=exp(x^2/2) is e.g.f. of A001147(2n), hence a(n) is the Stirling transform of A001147(2n). - Michael Somos, Jun 01 2005
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ exp(1/2*(exp(r)-1)^2 - n) * n^(n+1/2) / (r^n * sqrt(exp(r)*r*(-1-r+exp(r)*(1+2*r)))), where r is the root of the equation exp(r)*(exp(r) - 1)*r = n.
(a(n)/n!)^(1/n) ~ 2*exp(1/LambertW(2*n)) / LambertW(2*n).
(End)
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/(2^k * k!). - Seiichi Manyama, May 07 2022

A327505 Number of set partitions of [n] where each subset is again partitioned into four nonempty subsets.

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 65, 350, 1736, 9030, 60355, 561550, 6183221, 69469400, 761767370, 8239194600, 91058524831, 1073790441370, 13900626022985, 196759304278250, 2963381404815566, 46227649788125190, 736940002561065325, 12005645243802471250, 201482801573414254301
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=4 of A324162.
Cf. A346895.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 4), j=4..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 4], {j, 4, n}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!*stirling(n, 4*k, 2)/(24^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^4/4!).
a(n) = Sum_{k=0..floor(n/4)} (4*k)! * Stirling2(n,4*k)/(24^k * k!). - Seiichi Manyama, May 07 2022

A327506 Number of set partitions of [n] where each subset is again partitioned into five nonempty subsets.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42651, 253660, 1594230, 12463451, 134921787, 1806386946, 25524454410, 354189159871, 4751404201923, 62042283083648, 803415873180606, 10624141898153091, 148849893975447819, 2279247411153872566, 38395707003954897234
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=5 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 5), j=5..n))
        end:
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j - 1] StirlingS2[j, 5], {j, 5, n}]];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)
  • PARI
    a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/(120^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^5/5!).
a(n) = Sum_{k=0..floor(n/5)} (5*k)! * Stirling2(n,5*k)/(120^k * k!). - Seiichi Manyama, May 07 2022

A357869 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} (k*j)!* Stirling2(n,k*j)/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 2, 5, 0, 1, 0, 0, 6, 15, 0, 1, 0, 0, 6, 26, 52, 0, 1, 0, 0, 0, 36, 150, 203, 0, 1, 0, 0, 0, 24, 150, 962, 877, 0, 1, 0, 0, 0, 0, 240, 900, 6846, 4140, 0, 1, 0, 0, 0, 0, 120, 1560, 9366, 54266, 21147, 0, 1, 0, 0, 0, 0, 0, 1800, 8400, 101556, 471750, 115975, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2022

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,   1, ...
  0,  1,   0,   0,   0,   0, ...
  0,  2,   2,   0,   0,   0, ...
  0,  5,   6,   6,   0,   0, ...
  0, 15,  26,  36,  24,   0, ...
  0, 52, 150, 150, 240, 120, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000110, A052859, A353664, A353665.

Programs

  • PARI
    T(n, k) = sum(j=0, n, (k*j)!*stirling(n, k*j, 2)/j!);
    
  • PARI
    T(n, k) = if(k==0, 0^n, n!*polcoef(exp((exp(x+x*O(x^n))-1)^k), n));

Formula

For k > 0, e.g.f. of column k: exp((exp(x) - 1)^k).
T(0,k) = 1; T(n,k) = k! * Sum_{j=1..n} binomial(n-1,j-1) * Stirling2(j,k) * T(n-j,k).

A324238 Number of set partitions of [n] where all subsets are partitioned into the same number of nonempty subsets.

Original entry on oeis.org

1, 1, 3, 9, 32, 133, 625, 3328, 20172, 137073, 1023610, 8327069, 73711863, 707141074, 7278630390, 79522233635, 916354807657, 11119419230485, 142082222254701, 1908850117706652, 26862951637197372, 394233330125117457, 6013602782397882264, 95208871146458467659
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2019

Keywords

Crossrefs

Row sums of A324162.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0 or k>n, 0,
          add(b(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
        end:
    a:= n-> add(b(n, k), k=0..n):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n-j, k]* Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
    a[n_] := Sum[b[n, k], {k, 0, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, May 05 2020, after Maple *)

A324241 Number of set partitions of [2n] where each subset is again partitioned into n nonempty subsets.

Original entry on oeis.org

1, 2, 10, 100, 1736, 42651, 1324114, 49330996, 2141770488, 106175420065, 5917585057033, 366282501223002, 24930204592110338, 1850568574258750360, 148782988064395367700, 12879868072770703598760, 1194461517469808134322280, 118144018577011379763287565
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2019

Keywords

Examples

			a(2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)
          *binomial(n-1, j-1)*Stirling2(j, k), j=k..n))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n-j, k]* Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
    a[n_] := b[2n, n];
    a /@ Range[0, 18] (* Jean-François Alcover, May 05 2020, after Maple *)
  • PARI
    a(n) = if(n==0, 1, stirling(2*n, n, 2)+binomial(2*n, n)/2); \\ Seiichi Manyama, May 08 2022

Formula

a(n) = A324162(2n,n).
a(n) = A007820(n) + A088218(n) for n > 0. - Seiichi Manyama, May 08 2022

A325929 Total number of sub-subsets of set partitions of [n] where each subset is again partitioned into nonempty subsets.

Original entry on oeis.org

0, 1, 4, 14, 57, 262, 1326, 7499, 47662, 334794, 2555639, 21124116, 189492474, 1838561337, 19094196270, 210014919406, 2433655645025, 29707254349866, 382324345380310, 5179102279125987, 73515985821539778, 1087888385861343158, 16724494503770495231
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2019

Keywords

Crossrefs

Cf. A324162.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0 or k>n, 0,
          add(b(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
        end:
    a:= n-> add(b(n, k)*k, k=0..n):
    seq(a(n), n=0..23);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0 || k > n, 0, Sum[b[n - j, k] Binomial[n - 1, j - 1] StirlingS2[j, k], {j, k, n}]]];
    a[n_] := Sum[b[n, k] k, {k, 0, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A324162(n,k).

A327507 Number of set partitions of [n] where each subset is again partitioned into six nonempty subsets.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 21, 266, 2646, 22827, 179487, 1324114, 9357348, 64991927, 469882413, 4008715074, 46160063586, 691114045987, 11535301966755, 194240576089826, 3186376950695400, 50592286213334943, 780299037934036929, 11788245937182037114
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=6 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 6), j=6..n))
        end:
    seq(a(n), n=0..27);
  • PARI
    a(n) = sum(k=0, n\6, (6*k)!*stirling(n, 6*k, 2)/(6!^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^6/6!).
a(n) = Sum_{k=0..floor(n/6)} (6*k)! * Stirling2(n,6*k)/(6!^k * k!). - Seiichi Manyama, May 07 2022

A327508 Number of set partitions of [n] where each subset is again partitioned into seven nonempty subsets.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 28, 462, 5880, 63987, 627396, 5715424, 49330996, 408921513, 3292212924, 26136933186, 211891946448, 1910903676319, 21958686224932, 338516695449108, 6257281367040396, 122152192372692405, 2369188918134769500, 44783158458575933110
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2019

Keywords

Crossrefs

Column k=7 of A324162.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *binomial(n-1, j-1)*Stirling2(j, 7), j=7..n))
        end:
    seq(a(n), n=0..27);
  • PARI
    a(n) = sum(k=0, n\7, (7*k)!*stirling(n, 7*k, 2)/(7!^k*k!)); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp((exp(x)-1)^7/7!).
a(n) = Sum_{k=0..floor(n/7)} (7*k)! * Stirling2(n,7*k)/(7!^k * k!). - Seiichi Manyama, May 07 2022
Showing 1-10 of 15 results. Next