A324162
Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0
T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 1;
0, 5, 3, 1;
0, 15, 10, 6, 1;
0, 52, 45, 25, 10, 1;
0, 203, 241, 100, 65, 15, 1;
0, 877, 1428, 511, 350, 140, 21, 1;
0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
...
Columns k=0-10 give:
A000007,
A000110 (for n>0),
A060311,
A327504,
A327505,
A327506,
A327507,
A327508,
A327509,
A327510,
A327511.
-
T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
nmax = 10;
col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
-
T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022
A052859
Expansion of e.g.f.: exp(exp(2*x) - 2*exp(x) + 1).
Original entry on oeis.org
1, 0, 2, 6, 26, 150, 962, 6846, 54266, 471750, 4439762, 44911086, 485570186, 5581383990, 67890295202, 870493380126, 11726471352986, 165475293394470, 2439632685738482, 37491028556508366, 599285435979866666, 9945441791592272790, 171062503783616702402
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 827
- Vaclav Kotesovec, Asymptotics for a certain group of exponential generating functions, arXiv:2207.10568 [math.CO], Jul 13 2022 (set m=1, b=2, r=-2, d=1, s=1).
- Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
-
spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Set(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*2*binomial(n-1, j-1)*Stirling2(j, 2), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 02 2019
-
nn=20; a=Exp[x]-1; Range[0,nn]! CoefficientList[Series[Exp[a^2], {x,0,nn}], x] (* Geoffrey Critzer, Jan 20 2012 *)
Table[Sum[BellY[n, k, 2^Range[n] - 2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
Table[Sum[(2*k)!*StirlingS2[n, 2*k]/k!, {k, 0, n/2}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(k!*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
-
a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/k!); \\ Seiichi Manyama, May 07 2022
A347001
Expansion of e.g.f. exp( log(1 - x)^2 / 2 ).
Original entry on oeis.org
1, 0, 1, 3, 14, 80, 544, 4284, 38310, 383256, 4239006, 51345690, 675770028, 9600349824, 146396925648, 2384700728760, 41320373582652, 758780222426592, 14718569154071964, 300706641183038292, 6453691377726073128, 145154958710291611200, 3414131149418742544320
Offset: 0
-
nmax = 22; CoefficientList[Series[Exp[Log[1 - x]^2/2], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/(2^k*k!)); \\ Seiichi Manyama, May 06 2022
A240989
Expansion of e.g.f. exp(x^2 * (exp(x) - 1)).
Original entry on oeis.org
1, 0, 0, 6, 12, 20, 390, 2562, 11816, 105912, 1063530, 8815070, 81342492, 895185876, 9971185406, 112642410090, 1372455608400, 17750397057392, 236950003516626, 3286258330135734, 47688868443593540, 719345273005797900, 11222288509573985382, 181168865439054099266
Offset: 0
-
CoefficientList[Series[E^(x^2*(E^x-1)), {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^30); Vec(serlaplace(exp(x^2*(exp(x) - 1)))) \\ G. C. Greubel, Nov 21 2017
-
a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022
A346974
Expansion of e.g.f. log( 1 + (exp(x) - 1)^2 / 2 ).
Original entry on oeis.org
1, 3, 4, -15, -134, -357, 2374, 33645, 133186, -1288617, -24887906, -130115895, 1666879306, 40612637523, 262868197414, -4221449488635, -123802488449774, -952293015617937, 18497401668708334, 632675912865355425, 5622243546094977946, -128799294291220310997
Offset: 2
-
nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
a[n_] := a[n] = StirlingS2[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]
A354395
Expansion of e.g.f. exp( -(exp(x) - 1)^2 / 2 ).
Original entry on oeis.org
1, 0, -1, -3, -4, 15, 149, 672, 1091, -12855, -162796, -1060653, -2925319, 30881760, 598929239, 5688937797, 29126981516, -112222099065, -4930674413971, -69798552313728, -598032658869829, -1296500625378255, 65193402297999524, 1515140106814565547
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^2/2)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 2, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/((-2)^k*k!));
A353894
Expansion of e.g.f. exp( (x * (exp(x) - 1))^2 / 4 ).
Original entry on oeis.org
1, 0, 0, 0, 6, 30, 105, 315, 2128, 24948, 251415, 2093025, 16437036, 148728294, 1693067467, 21459867975, 270217289280, 3338860150488, 42428729660751, 581966068060485, 8654787480759700, 135253842794286930, 2163416823356628147, 35313421249845594075
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(exp(x)-1))^2/4)))
-
a(n) = n!*sum(k=0, n\4, (2*k)!*stirling(n-2*k, 2*k, 2)/(4^k*k!*(n-2*k)!));
A357031
E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2 / 2.
Original entry on oeis.org
1, 0, 1, 3, 22, 195, 2131, 28623, 445789, 7982355, 161208976, 3626200743, 89942239861, 2438520508515, 71754865476841, 2277574224716703, 77570723071721938, 2821841221403098995, 109200125293424385271, 4479379126010806153143, 194148151869063307919725
Offset: 0
-
m = 21; (* number of terms *)
A[_] = 0;
Do[A[x_] = Exp[(Exp[x*A[x]] - 1)^2/2] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
-
a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*stirling(n, 2*k, 2)/(2^k*k!));
Showing 1-8 of 8 results.
Comments