cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A324162 Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 02 2019

Keywords

Examples

			T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3.
Triangle T(n,k) begins:
  1;
  0,    1;
  0,    2,    1;
  0,    5,    3,    1;
  0,   15,   10,    6,    1;
  0,   52,   45,   25,   10,    1;
  0,  203,  241,  100,   65,   15,   1;
  0,  877, 1428,  511,  350,  140,  21,  1;
  0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000110 (for n>0), A060311, A327504, A327505, A327506, A327507, A327508, A327509, A327510, A327511.
Row sums give A324238.
T(2n,n) gives A324241.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add(
          T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n)))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    nmax = 10;
    col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!;
    T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
  • PARI
    T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f. of column k>0: exp((exp(x)-1)^k/k!).
Sum_{k=1..n} k * T(n,k) = A325929(n).
T(n,k) = Sum_{j=0..floor(n/k)} (k*j)! * Stirling2(n,k*j)/(k!^j * j!) for k > 0. - Seiichi Manyama, May 07 2022

A052859 Expansion of e.g.f.: exp(exp(2*x) - 2*exp(x) + 1).

Original entry on oeis.org

1, 0, 2, 6, 26, 150, 962, 6846, 54266, 471750, 4439762, 44911086, 485570186, 5581383990, 67890295202, 870493380126, 11726471352986, 165475293394470, 2439632685738482, 37491028556508366, 599285435979866666, 9945441791592272790, 171062503783616702402
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
a(n) is the number of ways to select a nonempty proper subset from each block of the set partitions of {1,2,...,n}. - Geoffrey Critzer, Jan 20 2012

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(C,C),C=Set(Z,1 <= card),S=Set(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
          *2*binomial(n-1, j-1)*Stirling2(j, 2), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    nn=20; a=Exp[x]-1; Range[0,nn]! CoefficientList[Series[Exp[a^2], {x,0,nn}], x]  (* Geoffrey Critzer, Jan 20 2012 *)
    Table[Sum[BellY[n, k, 2^Range[n] - 2], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
    Table[Sum[(2*k)!*StirlingS2[n, 2*k]/k!, {k, 0, n/2}], {n, 0, 25}] (* Vaclav Kotesovec, Oct 04 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (2*k)!*x^(2*k)/(k!*prod(j=1, 2*k, 1-j*x)))) \\ Seiichi Manyama, May 07 2022
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/k!); \\ Seiichi Manyama, May 07 2022

Formula

E.g.f.: exp(exp(x)^2-2*exp(x)+1).
Stirling transform of unsigned Hermite numbers: Sum_{k=0..n} Stirling2(n, k)*|HermiteH(k, 0)|. - Vladeta Jovovic, Sep 12 2003
From Seiichi Manyama, May 07 2022: (Start)
G.f.: Sum_{k>=0} (2*k)! * x^(2*k)/(k! * Product_{j=1..2*k} (1 - j * x)).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/k!. (End)
a(n) ~ 2^n * exp(1/2 - n - 2*sqrt(n/LambertW(n)) + n/LambertW(n)) * n^n / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Oct 04 2022

Extensions

New name using e.g.f. from Vaclav Kotesovec, Oct 04 2022

A347001 Expansion of e.g.f. exp( log(1 - x)^2 / 2 ).

Original entry on oeis.org

1, 0, 1, 3, 14, 80, 544, 4284, 38310, 383256, 4239006, 51345690, 675770028, 9600349824, 146396925648, 2384700728760, 41320373582652, 758780222426592, 14718569154071964, 300706641183038292, 6453691377726073128, 145154958710291611200, 3414131149418742544320
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Log[1 - x]^2/2], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/(2^k*k!)); \\ Seiichi Manyama, May 06 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |Stirling1(k,2)| * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * |Stirling1(n,2*k)|/(2^k * k!). - Seiichi Manyama, May 06 2022

A240989 Expansion of e.g.f. exp(x^2 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 390, 2562, 11816, 105912, 1063530, 8815070, 81342492, 895185876, 9971185406, 112642410090, 1372455608400, 17750397057392, 236950003516626, 3286258330135734, 47688868443593540, 719345273005797900, 11222288509573985382, 181168865439054099266
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 06 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[E^(x^2*(E^x-1)), {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x^2*(exp(x) - 1)))) \\ G. C. Greubel, Nov 21 2017
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

a(n) ~ exp((n-r^3)/(2+r)-n) * n^(n+1/2) / (r^n * sqrt((2*r^3*(3+r) + n*(1+r)*(4+r))/(2+r))), where r is the root of the equation r^2*((2+r) * exp(r) - 2) = n.
(a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(n^(1/3)/3))) / (3*LambertW(n^(1/3)/3)).
From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} Stirling2(n-2*k,k)/(n-2*k)!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!. (End)

A346974 Expansion of e.g.f. log( 1 + (exp(x) - 1)^2 / 2 ).

Original entry on oeis.org

1, 3, 4, -15, -134, -357, 2374, 33645, 133186, -1288617, -24887906, -130115895, 1666879306, 40612637523, 262868197414, -4221449488635, -123802488449774, -952293015617937, 18497401668708334, 632675912865355425, 5622243546094977946, -128799294291220310997
Offset: 2

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + (Exp[x] - 1)^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    a[n_] := a[n] = StirlingS2[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]

Formula

a(n) = Stirling2(n,2) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,2) * k * a(k).
a(n) ~ -n! * 2^(n+1) * cos(n*arctan(2*arctan(sqrt(2))/log(3))) / (n * (4*arctan(sqrt(2))^2 + log(3)^2)^(n/2)). - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/2)} (-1)^(k-1) * (2*k)! * Stirling2(n,2*k)/(k * 2^k). - Seiichi Manyama, Jan 23 2025

A354395 Expansion of e.g.f. exp( -(exp(x) - 1)^2 / 2 ).

Original entry on oeis.org

1, 0, -1, -3, -4, 15, 149, 672, 1091, -12855, -162796, -1060653, -2925319, 30881760, 598929239, 5688937797, 29126981516, -112222099065, -4930674413971, -69798552313728, -598032658869829, -1296500625378255, 65193402297999524, 1515140106814565547
Offset: 0

Views

Author

Seiichi Manyama, May 25 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^2/2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 2, 2)*v[i-j+1])); v;
    
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*stirling(n, 2*k, 2)/((-2)^k*k!));

Formula

a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,2) * a(n-k).
a(n) = Sum_{k=0..floor(n/2)} (2*k)! * Stirling2(n,2*k)/((-2)^k * k!).

A353894 Expansion of e.g.f. exp( (x * (exp(x) - 1))^2 / 4 ).

Original entry on oeis.org

1, 0, 0, 0, 6, 30, 105, 315, 2128, 24948, 251415, 2093025, 16437036, 148728294, 1693067467, 21459867975, 270217289280, 3338860150488, 42428729660751, 581966068060485, 8654787480759700, 135253842794286930, 2163416823356628147, 35313421249845594075
Offset: 0

Views

Author

Seiichi Manyama, May 09 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(exp(x)-1))^2/4)))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, (2*k)!*stirling(n-2*k, 2*k, 2)/(4^k*k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} (2*k)! * Stirling2(n-2*k,2*k)/(4^k * k! * (n-2*k)!).

A357031 E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2 / 2.

Original entry on oeis.org

1, 0, 1, 3, 22, 195, 2131, 28623, 445789, 7982355, 161208976, 3626200743, 89942239861, 2438520508515, 71754865476841, 2277574224716703, 77570723071721938, 2821841221403098995, 109200125293424385271, 4479379126010806153143, 194148151869063307919725
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 21; (* number of terms *)
    A[_] = 0;
    Do[A[x_] = Exp[(Exp[x*A[x]] - 1)^2/2] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x]*Range[0, m - 1]! (* Jean-François Alcover, Sep 12 2022 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*stirling(n, 2*k, 2)/(2^k*k!));

Formula

a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+1)^(k-1) * Stirling2(n,2*k)/(2^k * k!).
Showing 1-8 of 8 results.