cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A052506 Expansion of e.g.f. exp(x*exp(x)-x).

Original entry on oeis.org

1, 0, 2, 3, 16, 65, 336, 1897, 11824, 80145, 586000, 4588001, 38239224, 337611001, 3144297352, 30779387745, 315689119456, 3383159052833, 37790736663456, 439036039824193, 5294386116882280, 66155074120062921, 855156188538926296, 11418964004032623809
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of forests of rooted labeled trees with height exactly one. Equivalently, the number of idempotent mappings from {1,2,...,n} into {1,2,...,n} where each fixed point has at least one (other than itself) element mapped to it. See the second summation formula provided by Vladeta Jovovic with conditions on k, the number of fixed points. - Geoffrey Critzer, Sep 20 2012

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x*Exp(x)-x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{S=Set(Tree), Tree=Prod(Z,Set(Z,0 < card))},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    nn=20;Range[0,nn]! CoefficientList[Series[Exp[x(Exp[x]-1)], {x,0,nn}], x]  (* Geoffrey Critzer, Sep 20 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x*exp(x)-x) )) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
    
  • Sage
    m = 30; T = taylor(exp(x*exp(x)-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*(n-k-1)^k. - Vladeta Jovovic, Apr 12 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*k!*Stirling2(n-k, k). - Vladeta Jovovic, Dec 19 2004
a(n) ~ exp((1-r*(n+r))/(1+r)) * n^(n+1/2) * sqrt(1+r) / (r^n * sqrt((1+r)^3 + n*(1+3*r+r^2))), where r satisfies exp(r)*(1+r) - (1+n)/r = 1. - Vaclav Kotesovec, Aug 04 2014
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n)/2))) / (2*LambertW(sqrt(n)/2)). - Vaclav Kotesovec, Aug 06 2014
G.f.: Sum_{k>=0} x^k / (1 - (k-1)*x)^(k+1). - Seiichi Manyama, Aug 29 2022

A292892 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^k * (exp(x) - 1)).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 0, 2, 5, 1, 0, 0, 3, 15, 1, 0, 0, 6, 16, 52, 1, 0, 0, 0, 12, 65, 203, 1, 0, 0, 0, 24, 20, 336, 877, 1, 0, 0, 0, 0, 60, 390, 1897, 4140, 1, 0, 0, 0, 0, 120, 120, 2562, 11824, 21147, 1, 0, 0, 0, 0, 0, 360, 210, 11816, 80145, 115975, 1, 0, 0, 0, 0, 0, 720, 840, 20496, 105912, 586000, 678570
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,   1, ...
   1,  0,  0,  0,   0, ...
   2,  2,  0,  0,   0, ...
   5,  3,  6,  0,   0, ...
  15, 16, 12, 24,   0, ...
  52, 65, 20, 60, 120, ...
		

Crossrefs

Columns k=0..3 give A000110, A052506, A240989, A292891.
Rows n=0..1 give A000012, A000007.
Main diagonal gives A000007.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\(k+1), stirling(n-k*j, j, 2)/(n-k*j)!); \\ Seiichi Manyama, Jul 09 2022

Formula

From Seiichi Manyama, Jul 09 2022: (Start)
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} Stirling2(n-k*j,j)/(n-k*j)!.
T(0,k) = 1 and T(n,k) = (n-1)! * Sum_{j=k+1..n} j/(j-k)! * T(n-j,k)/(n-j)! for n > 0. (End)

A358013 Expansion of e.g.f. 1/(1 - x^2 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 750, 5082, 23576, 453672, 5755770, 50894030, 841270452, 14694142476, 201442729670, 3552604015170, 73814245552560, 1369932831933392, 27860865121662066, 655240785723048726, 15052226249248287500, 357713461766745539700, 9416426612423343023742
Offset: 0

Views

Author

Seiichi Manyama, Oct 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*(exp(x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=3, i, 1/(j-2)!*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k!*stirling(n-2*k, k, 2)/(n-2*k)!);

Formula

a(0) = 1; a(n) = n! * Sum_{k=3..n} 1/(k-2)! * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/3)} k! * Stirling2(n-2*k,k)/(n-2*k)!.

A007121 Expansion of e.g.f. ( (1+x)^x )^x.

Original entry on oeis.org

1, 0, 0, 6, -12, 40, 180, -1512, 11760, -38880, 20160, 2106720, -22381920, 173197440, -703999296, -1737489600, 86030380800, -1149696737280, 11455162974720, -89560399541760, 636617260339200, -6318191386644480, 139398889956480000, -3797936822885990400
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240989.

Programs

  • Maple
    A007121 := proc(n)
            n!*coeftayl( (1+x)^(x^2),x=0,n) ;
    end proc:
    seq(A007121(n),n=0..40) ; # R. J. Mathar, Dec 15 2011
  • Mathematica
    With[{nn=30},CoefficientList[Series[((1+x)^x)^x,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 24 2014 *)
  • Maxima
    a(n):=sum(stirling1(n-2*k, k)/(n-2*k)!, k, 0, n/3); /* Vladimir Kruchinin, Dec 13 2011 */
    
  • PARI
    a(n) = n!*sum(k=0, n\3, stirling(n-2*k, k, 1)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=3, i, (-1)^j*j/(j-2)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

a(n) = n!*Sum_{k=0..floor(n/3)} Stirling1(n-2*k,k)/(n-2*k)!. - Vladimir Kruchinin, Dec 13 2011
a(0) = 1; a(n) = -(n-1)! * Sum_{k=3..n} (-1)^k * k/(k-2) * a(n-k)/(n-k)!. - Seiichi Manyama, Jul 09 2022

Extensions

Signs added by R. J. Mathar, Vladimir Kruchinin, Dec 15 2011

A292951 Expansion of e.g.f. exp(x^2 * (1 - exp(x))).

Original entry on oeis.org

1, 0, 0, -6, -12, -20, 330, 2478, 11704, -15192, -751050, -7817150, -38408172, 151402524, 5793891922, 69046056870, 393083614320, -2517944476592, -98819987200146, -1384209703077750, -9376308260215220, 67288368700200900, 3186749671049174538
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Crossrefs

Column k=2 of A292894.
Cf. A240989.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^2 (1-Exp[x])],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^2*(1-exp(x)))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1)^k*stirling(n-2*k, k, 2)/(n-2*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=3, i, j/(j-2)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * Stirling2(n-2*k,k)/(n-2*k)!.
a(0) = 1; a(n) = -(n-1)! * Sum_{k=3..n} k/(k-2)! * a(n-k)/(n-k)!. (End)

A356949 E.g.f. satisfies log(A(x)) = x^2 * (exp(x) - 1) * A(x).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 1110, 7602, 35336, 1103832, 14984010, 134552990, 3457329612, 70828191876, 1017237973934, 25648737955050, 676111332667920, 13760810592066992, 373071111301807506, 11594147432172228918, 307097278689726728660, 9330499711181779575900
Offset: 0

Views

Author

Seiichi Manyama, Sep 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[_] = 1;
    Do[A[x_] = Exp[(-1 + Exp[x])*A[x]*x^2] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (k+1)^(k-1)*stirling(n-2*k, k, 2)/(n-2*k)!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(x^2*(exp(x)-1))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^2*(1-exp(x))))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^2*(1-exp(x)))/(x^2*(1-exp(x)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) * Stirling2(n-2*k,k)/(n-2*k)!.
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (x^2 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( -LambertW(x^2 * (1 - exp(x))) ).
E.g.f.: A(x) = LambertW(x^2 * (1 - exp(x)))/(x^2 * (1 - exp(x))).

A362892 Expansion of e.g.f. 1/(1 + LambertW(-x^2 * (exp(x) - 1))).

Original entry on oeis.org

1, 0, 0, 6, 12, 20, 1470, 10122, 47096, 1814472, 25119450, 226527950, 6732015972, 142901684796, 2071229736758, 57596022404130, 1589579741044080, 32832196825559312, 951335638952843826, 31043287459520549910, 838738470701197009820
Offset: 0

Views

Author

Seiichi Manyama, May 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1+LambertW[-x^2(Exp[x]-1)]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 14 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^2*(exp(x)-1)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^k * Stirling2(n-2*k,k)/(n-2*k)!.
a(n) ~ n^n / (sqrt((2+r)*exp(r) - 2) * r^(n+1) * exp(n + 1/2)), where r = 0.640353588740603511543638690178204955926349... is the root of the equation r^2*(exp(r+1) - exp(1)) = 1. - Vaclav Kotesovec, May 19 2025
Showing 1-7 of 7 results.